【總結(jié)】3.兩角和與差的正弦上一節(jié)我們研究了兩角和與差的余弦,一個自然的想法是兩角和與差的正弦等于什么?即sin(α±β)=?本節(jié)我們就探索這樣的問題,并加以應(yīng)用.1.兩角差的正弦公式____________________________________,這個公式對任意α、β都成立.答案:sin(α
2025-11-30 03:40
【總結(jié)】19:29:2419:29:24一、新課引入問題1:cos15°=?問題2:cos15°=cos(45°-30°)=cos45°-cos30°?cos30°=cos(90°-60°)=cos
2025-11-08 19:44
【總結(jié)】雙基達標?限時20分鐘?1.計算cos80°cos20°+sin80°·sin20°的值為().A.22B.32D.-22答案C2.設(shè)α∈??????0,π2,若sinα=35,則2cos
2025-11-19 01:12
【總結(jié)】二倍角的正弦、余弦、正切公式學習目標:1、以兩角和正弦、余弦和正切公式為基礎(chǔ),推導二倍角正弦、余弦和正切公式2、二倍公式角的理解及其靈活運用回憶兩角和的正弦、余弦、正切公式??????sinsincoscos)cos(?????????sincoscossin)sin(
2025-11-09 08:49
【總結(jié)】課題:兩角和與差的正切(1)班級:姓名:學號:第學習小組【學習目標】(差)的正切公式的推導過程;(差)的正切公式進行簡單三角函數(shù)式的化簡,求值和證明。【課前預習】1、求?15tan的值。2、兩角和的正切公式的推導:
2025-11-10 21:43
【總結(jié)】一、選擇題1.cos45°cos15°+sin15°sin45°的值為()A.-32B.32C.22D.-22【解析】cos45°cos15°+sin15°sin45°=cos(45°-15°
2025-11-18 23:39
【總結(jié)】學習目標掌握用向量方法建立兩角差的余弦公式.通過簡單運用,使學生初步理解公式的結(jié)構(gòu)及其功能,為建立其它和(差)公式打好基礎(chǔ).學習過程一、課前準備自學過程:1、cos()????,2、cos()????
【總結(jié)】"【志鴻全優(yōu)設(shè)計】2021-2021學年高中數(shù)學兩角和與差的正切函數(shù)課后訓練北師大版必修4"1.若tanα=3,則13tan4?????????的值為().A.-2B.2C.12D.12?2.已知tan(α+β)=25,1
2025-11-24 03:13
【總結(jié)】某城市的電視發(fā)射塔建在市郊的一座小山上.如圖所示,在地平面上有一點A,測得A、C兩點間距離約為60米,從A觀測電視發(fā)射塔的視角(∠CAD)為∠DAB=求AD長度.????思考:兩角差的余弦公式探究:如何用任意角α,β的正弦、余弦值表示?cos()???
2025-07-25 16:07
【總結(jié)】 兩角差的余弦公式 考試標準 課標要點 學考要求 高考要求 兩角差的余弦公式 b b 兩角差的正弦公式及兩角和的正弦、余弦公式 c c 兩角和與差的正切公式 ...
2025-04-03 04:26
【總結(jié)】、余弦、正切公式2020、12、24一、復習:?)cos(????C)(???簡記:兩角差的余弦公式??)cos(??????sinsincoscos?同名積,符號反。二、公式的推導??)cos(??)](cos[???????
2025-11-09 12:17
【總結(jié)】兩角和與差的正切沈陽二中數(shù)學組(1)掌握兩角和與差的正切公式;(2)熟練應(yīng)用公式求值和證明;(3)掌握公式正,反兩方面的運用及公式的變形運用.*本節(jié)重點是公式的結(jié)構(gòu)特點及其推導方法,公式成立的條件,運用公式求值.*本節(jié)難點是公式的逆向和變形運用.學習目標?如何用ta
2025-11-09 12:09
【總結(jié)】兩角和與差的正弦、余弦、正切公式學習目標:1.掌握由兩角差的余弦公式推導出兩角和的余弦公式及兩角和與差的正弦公式.2.會用兩角和與差的正、余弦公式進行簡單的三角函數(shù)的求值、化簡、計算等.3.熟悉兩角和與差的正、余弦公式的靈活運用,了解公式的正用、逆用以及角的變換的常用方法.學習重點
2025-11-26 06:46
【總結(jié)】兩角和與差的正弦、余弦、正切公式學習目標:1.能利用兩角和與差的正、余弦公式推導出兩角和與差的正切公式.2.能利用兩角和與差的正切公式進行化簡、求值、證明.3.熟悉兩角和與差的正切公式的常見變形,并能靈活應(yīng)用.學習重點:兩角和、差正切公式的推導過程及運用學習難點:兩角和與差正切公式的靈活運用一.
【總結(jié)】兩角和與差的正弦、余弦、正切公式重點:公式的應(yīng)用.難點:公式的推導及變形應(yīng)用.六個公式的特征兩角和(差)的余弦:余余、正正、符號異(即公式右端分別是α與β的余弦之積,以及正弦之積,中間的符號與左邊相反);兩角和(差)的正弦:正余、余正、符號同;兩角和(差)的正切:分子同、分母異.它們的內(nèi)在聯(lián)系如下:一、和(差)角的余弦公式