【總結】§兩角和與差的正弦、正切和余切【學習目標、細解考綱】、余弦、正切公式,會初步運用公式求一些角的三角函數值;角和與差的三角函數公式的探究過程,提高發(fā)現問題、分析問題、解決問題的能力;【知識梳理、雙基再現】1、在一般情況下sin(α+β)≠sinα+sinβ,cos(α+β)≠cosα+cosβ
2025-11-21 13:51
【總結】兩角和與差的正弦、余弦和正切公式兩角差的余弦公式問題提出,我們學習了哪些基本的三角函數公式?30°,45°,60°等特殊角的三角函數值可以直接寫出,利用誘導公式還可進一步求出150°,210°,315°等角的三角函
2025-11-09 12:17
【總結】兩角和與差的正弦、余弦、正切公式1.sin62°cos28°+cos62°sin28°的值為()A.-1B.1C.0解析:sin62°cos28°+cos62°sin28°=sin(62°+
2025-11-26 06:46
【總結】兩角和與差的正弦、余弦、正切公式知識點及角度難易度及題號基礎中檔稍難兩角和與差正切公式的運用1、3、67、9給值求值(角)問題2、4、510、11綜合問題8121.與1-tan21°1+tan21°相等的是()A.tan66
【總結】《兩角和與差的正切》教學設計課前預習問題串:1、兩角和與差的正切如何推導?2、兩角和與差的正切有何限制條件?3、公式特點是什么?如何記憶?4、公式有什么用處?有什么變形?一、教學目標1、知識目標:掌握公式的推導過程,理解公式成立的條件;會利用公式求值。2、能力目標:培
2025-11-19 00:26
【總結】《兩角和與差的正切》課教學設計 一、設計說明 從兩角和與差的正余弦公式導入兩角和與差的正切公式,培養(yǎng)學生的觀察、分析、類比、聯想的能力,從公式的內在聯系及問題的解決過程中發(fā)展學生的正向、逆向思...
2025-04-03 03:16
【總結】高中數學必修四《兩角和與差的正切》教學設計一、概述本節(jié)課為1課時,40分鐘。本節(jié)課選自《普通高中課程標準數學教科書?數學(必修四)》(人教B版)第三章《三角恒等變換》中的第三節(jié)《兩角和與差的正切》,是《兩角和與差的正余弦》的延伸,也是三角恒等變換公式的重要組成部分.教材主要通過兩角和的正弦公式及兩角和的余弦公式
2025-11-10 11:24
【總結】"【志鴻全優(yōu)設計】2021-2021學年高中數學兩角和與差的正切函數課后訓練北師大版必修4"1.若tanα=3,則13tan4?????????的值為().A.-2B.2C.12D.12?2.已知tan(α+β)=25,1
2025-11-24 03:13
【總結】【優(yōu)化指導】2021年高中數學兩角和與差的正弦、余弦、正切公式(一)課時跟蹤檢測新人教A版必修4知識點及角度難易度及題號基礎中檔稍難三角函數式的化簡求值1、510條件求值問題46、7、8綜合問題2、39、11121.若sin(α+β)cosβ-cos(α
2025-11-30 03:40
【總結】【優(yōu)化指導】2021年高中數學兩角和與差的正弦、余弦、正切公式(二)學業(yè)達標測試新人教A版必修41.若tan??????π4+α=3,則tanα的值為()A.-2B.-12D.2解析:tan??????π4+α=3,即1+tanα1-tanα=3,解得tanα
【總結】【優(yōu)化指導】2021年高中數學兩角和與差的正弦、余弦、正切公式(一)學業(yè)達標測試新人教A版必修41.sin62°cos28°+cos62°sin28°的值為()A.-1B.1C.0解析:sin62°cos28°+cos
【總結】a·b=|a||b|cosθ向量數量積的定義是?向量與自身的內積為?兩個單位向量的數量積等于?向量長度的平方它們之間夾角的余弦函數值思考?yxoP1βP2α在直角坐標系中,以原點為中心,單位長度為半徑作單位圓,以原點為頂點,x軸為始邊分別作角任意α,β與單位圓交于
2025-11-08 15:05
【總結】兩角和與差的正弦、余弦、正切公式新課導入想一想:cos15????????30sin45sin30cos45cos42621222322??????那呢?cos75cos15cos(4530)??cos75?cos(3
2025-06-06 00:45
【總結】二倍角的正弦、余弦、正切公式問題提出t57301p2???????1.兩角和與差的正弦、余弦和正切公式分別是什么?2.是特殊角,與是倍半關系,利用上述公式可以求的三角函數值.如果能推導一組反映倍半關系的三角函數公式,將是很有實際意義的.4?4?8?8?
【總結】第三章三角恒等變換兩角和與差的正弦、余弦和正切公式兩角差的余弦公式1.熟悉用向量的數量積推導出兩角差的余弦公式的過程,進一步體會向量方法的作用.(難點)2.熟記兩角差的余弦公式,并能靈活運用.(重點)3.兩角差的余弦公式的變形.(難點)兩角差的余弦公式公式cos(α-β)=_______
2025-11-25 20:52