【總結】圓錐曲線綜合題(向量的應用)[例1][解析]體現(xiàn)了向量的工具性,以向量為題目的背景,求軌跡的方程。題目仍然可以進一步研究曲線的幾何性質。練習(2020年高考題)DB[例2][解析]利用向量的運算性質,特別是向量垂直、相等、共線等,研究圓錐曲線的幾何性質。
2024-11-06 19:11
【總結】高中數(shù)學圓錐曲線解答題解法面面觀匯編:范文橋圓錐曲線解答題中的十一題型:幾乎全面版題型一:數(shù)形結合確定直線和圓錐曲線的位置關系題型二:弦的垂直平分線問題題型三:動弦過定點的問題題型四:過已知曲線上定點的弦的問題題型五:向量問題題型六:面積問題題型七:弦或弦長為定值、最值問題問題八:直線問題問題九:對稱問題問題十、存在性問題:(存在點,存在直線y=k
2025-03-23 02:50
【總結】求圓錐曲線的最值常用哪些方法?圓錐曲線中的最值問題(一)呢?拋物線又如何進行換元若將橢圓換成雙曲線、.1如何求其范圍呢?換成若將???xyyx想一想OyxOyxpxy22?12222??byax換元法判別式法Q(3,4)P利用幾何意義
2024-11-30 12:26
【總結】圓夢教育高二圓錐曲線單元測試姓名:得分:一、選擇題:1.已知動點的坐標滿足方程,則動點的軌跡是( ?。〢.拋物線 C.橢圓2.設P是雙曲線上一點,雙曲線的一條漸近線方程為、F2分別是雙曲線的左、右焦點,若,則()A.1或5
2025-07-23 06:44
【總結】2020屆高考數(shù)學復習強化雙基系列課件73《圓錐曲線-橢圓》一.基本知識概要1橢圓的兩種定義:①平面內與兩定點F1,F(xiàn)2的距離的和等于定長的點的軌跡,即點集M={P||PF1|+|PF2|=2a,2a>|F1F2|};(時為線段,無軌跡)。其中兩定
2024-11-12 01:26
【總結】直線與圓錐曲線一、直線與圓錐曲線的位置關系相離——沒有公共點相切——一個公共點相交——一個或兩個公共點0??0??0??032???yxA、032???yxB、032C???yx、092D???yx、02??yx142522??yx1、(B12)與直線
2025-08-05 09:03
【總結】直線與圓錐曲線綜合問題一.考點分析。⑴直線與圓錐曲線的位置關系和判定直線與圓錐曲線的位置關系有三種情況:相交、相切、相離.直線方程是二元一次方程,圓錐曲線方程是二元二次方程,由它們組成的方程組,經(jīng)過消元得到一個一元二次方程,直線和圓錐曲線相交、相切、相離的充分必要條件分別是0??、0??、0??.⑵直線與圓錐曲線相交所得的弦長
2025-01-09 16:02
【總結】圓錐曲線復習課橢圓雙曲線拋物線幾何條件與兩個定點的距離的和等于常數(shù)與兩個定點的距離的差的絕對值等于常數(shù)與一個定點和一條定直線的距離相等標準方程圖形頂點坐標(±a,0),(0,±b)(±a,0)(0,0))0(12
2025-07-25 03:46
【總結】§雙曲線及其標準方程1.橢圓的定義平面內與兩定點F1、F2的距離的和等于常數(shù)2a的點M的軌跡.(2a|F1F2|0)|MF1|+|MF2|=2a①、數(shù)學表達式:
2024-11-10 00:28
【總結】2022年01月圓的推廣飛船軌道為什么斜著切割一個圓柱得到的截線是一個橢圓呢?有關圓的某些定理在圓錐曲線中的推廣是什么樣的?圓錐曲線在大自然的基本結構中扮演著怎樣的角色?斜切圓柱“數(shù)學是人類文化的重要組成部分……應適當反映數(shù)學的歷史、應用和發(fā)展趨勢,數(shù)學
2025-01-19 01:18
【總結】高二數(shù)學圓錐曲線基礎練習題(一)一、選擇題:1.拋物線的焦點坐標為 () A. B.C. D.2.雙曲線的虛軸長是實軸長的2倍,則 () A. B. C.
2025-08-05 17:11
【總結】?解析幾何的產(chǎn)生?十六世紀以后,由于生產(chǎn)和科學技術的發(fā)展,天文、力學、航海等方面都對幾何學提出了新的需要。比如,德國天文學家開普勒發(fā)現(xiàn)行星是繞著太陽沿著橢圓軌道運行的,太陽處在這個橢圓的一個焦點上;意大利科學家伽利略發(fā)現(xiàn)投擲物體試驗著拋物線運動的。這些發(fā)現(xiàn)都涉及到圓錐曲線,要研究這些比較復雜的曲線,原先的一套方法顯然已經(jīng)不適應了
2025-08-05 10:19
【總結】專題十六圓錐曲線1.雙曲線的焦距是10,則實數(shù)的值是()A.B.4C.16D.812.橢圓的右焦點到直線的距離是()A.B.C.1D.3.若雙曲線的一條準線與拋物線的準線重合,則雙曲線的離心率為()A.
2025-08-18 17:18
【總結】平面內到兩定點F1、F2距離之和為常數(shù)2a(①)的點的軌跡叫橢圓.有|PF1|+|PF2|=2a.在定義中,當②時,表示線段F1F2;當③時,不表示任何圖形.2a>|F1F2|2a=|F1F2|2a<
2025-08-09 15:25
【總結】大慶目標教育圓錐曲線一、知識結構在平面直角坐標系中,如果某曲線C(看作適合某種條件的點的集合或軌跡)上的點與一個二元方程f(x,y)=0的實數(shù)解建立了如下的關系:(1)曲線上的點的坐標都是這個方程的解;(2);這條曲線叫做方程的曲線.點與曲線的關系若曲線C的方程是f(x,y)=0,則點P0(x0,y0)在曲線C上f(x0,y0)=0;點P0(x0,y0)
2025-08-04 14:02