【總結(jié)】等比數(shù)列的定義)2(?n)1(?nqaann??12.qaann??1或1.qaaaaaaaaaann????????145342312如果等比數(shù)列{an}的首項是a1,公比是q,則11??
2025-07-25 15:34
【總結(jié)】第一篇:關(guān)于和式的數(shù)列不等式證明方法 關(guān)于“和式”的數(shù)列不等式證明方法 方法:先求和,再放縮 例 1、設(shè)數(shù)列{an}滿足a1=0且an 1n,2an+1=1+an+1gan,n ?N*,記...
2024-10-28 23:38
【總結(jié)】高三第一輪復(fù)習(xí)《必修五第二章數(shù)列》?第一節(jié)數(shù)列的概念與簡單表示法在教學(xué)中要充分發(fā)揮學(xué)生的主體地位,盡量讓學(xué)生獨立完成包括例題在內(nèi)的題目,教師在于對方法和規(guī)律的總結(jié),在于引導(dǎo)。知識點考試大綱說明考情分析數(shù)列的概念和簡單表示種簡單的表示方法(列表、圖象、通項公式)
2025-08-07 10:50
【總結(jié)】第一篇:構(gòu)造函數(shù)證明數(shù)列不等式答案 構(gòu)造函數(shù)證明數(shù)列不等式答案 : ln22+ln33+ln44+L+ ln33 nn 3- n 5n+66 (n?N).* 解析:先構(gòu)造函數(shù)有l(wèi)...
2024-10-28 06:10
【總結(jié)】我的宗旨:授人以漁QQ1294383109歡迎互相交流訪問我的空間第三講數(shù)列與不等式(文)第一節(jié)數(shù)列及其應(yīng)用數(shù)列是高中數(shù)學(xué)重要內(nèi)容,是高考命題的熱點.縱觀近幾年的高考試題,對等差和等比數(shù)列的概念、通項公式、性質(zhì)、前n項和公式,對增長率、分期付款等數(shù)列實際應(yīng)用題多以客觀題和中低檔解答題為主,對數(shù)列與函數(shù)、方程、不等式
2025-08-14 05:12
【總結(jié)】第一篇:放縮法(不等式、數(shù)列綜合應(yīng)用) “放縮法”證明不等式的基本策略 近年來在高考解答題中,常滲透不等式證明的內(nèi)容,而不等式的證明是高中數(shù)學(xué)中的一個難點,它可以考察學(xué)生邏輯思維能力以及分析問題和...
2024-10-29 04:33
【總結(jié)】......數(shù)學(xué)數(shù)列與不等式的綜合問題突破策略【題1】 等比數(shù)列{an}的公比q>1,第17項的平方等于第24項,求使a1+a2+…+an>恒成立的正整數(shù)n的范圍.【題2】設(shè)數(shù)列{an}的前項和為Sn.已知a1=a,an+1=Sn+3n,n∈N*.(1)設(shè)bn=Sn-3n,求數(shù)列{bn}的通項公式;(2)若an+1≥a
2025-03-25 02:51
【總結(jié)】不等式的應(yīng)用高三備課組一、內(nèi)容歸納1知識精講:在前面幾節(jié)課學(xué)習(xí)的不等式的性質(zhì)、證明和解不等式的基礎(chǔ)上運用不等式的的知識和思想方法分析、解決一些涉及不等式關(guān)系的問題.2重點難點:善于將一個表面上看來并非是不等式的問題借助不等式的有關(guān)部門知識來解決.3思維方式:合理轉(zhuǎn)化;正
2024-11-09 08:50
【總結(jié)】第36講不等式的性質(zhì)與基本不等式及應(yīng)用等關(guān)系,了解不等式(組)的實際背景.,掌握比較兩個實數(shù)大小的一般步驟.,會用基本不等式解決簡單的最大(?。┲祮栴}.x0,則x+的最小值為.2x22α∈(0,),β∈[0,],那么2α-的取
2024-11-09 04:21
【總結(jié)】2020屆高考數(shù)學(xué)復(fù)習(xí)強化雙基系列課件42《不等式的應(yīng)用》一、內(nèi)容歸納1知識精講:在前面幾節(jié)課學(xué)習(xí)的不等式的性質(zhì)、證明和解不等式的基礎(chǔ)上運用不等式的的知識和思想方法分析、解決一些涉及不等式關(guān)系的問題.2重點難點:善于將一個表面上看來并非是不等式的問題借助不等式的有關(guān)部門知識來解決.3思維方式:合理轉(zhuǎn)化;正
2024-11-11 08:50
【總結(jié)】數(shù)列通項的求法數(shù)列是高中代數(shù)的重要內(nèi)容之一,也是初等數(shù)學(xué)與高等數(shù)學(xué)的銜接點,因而在歷年的高考試題中占有較大的比重,在這類問題中,求數(shù)列的通項往往是解題的突破口、關(guān)鍵點。一、觀察法?觀察法就是觀察數(shù)列特征,橫向看各項之間的結(jié)構(gòu),縱向看各項與項數(shù)n的內(nèi)在聯(lián)系。?適用于一些較簡單、特殊的數(shù)列。例1寫出下列數(shù)列的一
2025-01-08 14:05
【總結(jié)】第四節(jié)數(shù)列的通項基礎(chǔ)梳理:如果數(shù)列{an}的________________之間的關(guān)系可以用一個公式來表示,那么這個公式叫做這個數(shù)列的通項公式.第n項與它的序號n2.數(shù)列的遞推公式:如果已知數(shù)列{an}的首項(或者前幾項),且任意一項an與an-1(或其前面的項)之間的關(guān)系可以______________,那么
2024-11-09 08:08
【總結(jié)】新課標人教版課件系列《高中數(shù)學(xué)》必修5《不等式的性質(zhì)》審校:王偉教學(xué)目標?1、掌握不等式的性質(zhì)及其推論,并能證明這些結(jié)論。?2、進一步鞏固不等式性質(zhì)定理,并能應(yīng)用性質(zhì)解決有關(guān)問題。?教學(xué)重點:?1、不等式的性質(zhì)及證明。?2、不等式的性質(zhì)及應(yīng)用性質(zhì)1:如果ab
2024-11-11 05:50
【總結(jié)】第一篇:數(shù)列不等式結(jié)合的題的放縮方法 數(shù)列不等式結(jié)合的題的放縮方法 2011-4-611:51提問者:makewest|懸賞分:20|瀏覽次數(shù):559次 2011-4-611:53最佳答案 放...
2024-10-29 04:45
【總結(jié)】第一篇:證明數(shù)列前n項和不等式的定積分放縮法 證明數(shù)列前n項和不等式的定積分放縮法 摘要:本文深入分析數(shù)列與函數(shù)之間的聯(lián)系,結(jié)合高等數(shù)學(xué)中數(shù)項級數(shù)[4]的觀點研究高考證明數(shù)列前n項和不等式的相關(guān)問...
2024-11-03 22:04