【總結(jié)】等比數(shù)列的前n項和(第一課時)等比數(shù)列的前n項和等比數(shù)列的前項和一、教材分析二、目標分析三、過程分析四、教法分析五、評價分析一、教材分析一、教材分析1.從在教材中的地位與作用來看《等比數(shù)列的前n項和》是數(shù)列這一章中的一個重要內(nèi)容,它不僅在現(xiàn)實生活中有著廣泛的實際應(yīng)用,
2025-10-31 12:46
【總結(jié)】等比數(shù)列的概念亳州三中范圖江一、教學(xué)目標1、體會等比數(shù)列特性,理解等比數(shù)列的概念。2、能根據(jù)定義判斷一個數(shù)列是等比數(shù)列,明確一個數(shù)列是等比數(shù)列的限定條件。3、能夠運用類比的思想方法得到等比數(shù)列的定義,會推導(dǎo)出等比數(shù)列的通項公式。二、教學(xué)重點、難點重點:等比數(shù)列定義的歸納及應(yīng)用,通項公式的推導(dǎo)。難點:正確理解等比數(shù)列的定義,根據(jù)定義判斷或證明某些數(shù)列為
2025-04-17 08:12
【總結(jié)】第19講等差數(shù)列與等比數(shù)列綜合運用一、等比數(shù)列與等差數(shù)列的概念分析等差數(shù)列等比數(shù)列定義差商通項公式結(jié)構(gòu)相似,性質(zhì)類似,不同地方1(1)naand???(和)11nnaaq???(積)不同點項沒有限制項必須非零聯(lián)系⑴正項等比數(shù)列
2025-11-01 07:28
【總結(jié)】等比數(shù)列1、觀察下列數(shù)列,指出它們的共同特征:(1)1,2,4,8,….(2)….(3)1,20,202,203,….(4)活期存入10000元,年利率是%,按照復(fù)利,5年內(nèi)各年末本利和分別是10000(1+),10000(1+)2,10000(1+)3,1
2025-07-21 17:18
【總結(jié)】2.等比數(shù)列的概念及通項公式1.從第2項起,每一項與它的前一項的比都等于同一個常數(shù),那么這個數(shù)列叫等比數(shù)列,這個常數(shù)叫做等比數(shù)列的公比.2.等比數(shù)列{an}的通項公式an=a1·qn-1(q≠0).3.如果a、G、b三個數(shù)滿足G2=G稱為a與b的等比中項.4.等比數(shù)列的性質(zhì).
2024-12-05 00:28
2024-12-08 13:12
【總結(jié)】數(shù)列數(shù)列數(shù)列數(shù)列等比數(shù)列的概念1.等差數(shù)列的定義2.等差數(shù)列的通項公式3.計算公差d的方法4.等差中項公式從第2項起,每一項與它前一項的差等于同一個常數(shù).從第2項起,任一項減去它的前一項.a(chǎn)n=a1+(n-1)d.a(chǎn)+b2A=
2025-07-26 00:58
【總結(jié)】等比數(shù)列的前n項和第1課時一、新課導(dǎo)入:即,①,②②-①得即.由此對于一般的等比數(shù)列,其前項和,如何化簡?求數(shù)列:二.新課講解:Sn=a1+a1q+a1q2+…+a1qn-2+a1qn-1qSn=a1q+a1q
2025-10-07 20:25
【總結(jié)】中國領(lǐng)先的中小學(xué)教育品牌精銳教育學(xué)科教師輔導(dǎo)講義講義編號11sh11sx00學(xué)員編號:年級:課時數(shù):3學(xué)員姓名:
2025-08-18 16:49
【總結(jié)】等比數(shù)列的前n項和目的要求?1.掌握等比數(shù)列的前n項和公式。?2.掌握前n項和公式的推導(dǎo)方法。?3.對前n項和公式能進行簡單應(yīng)用。重點難點?重點:等比數(shù)列前n項和公式的推導(dǎo)與應(yīng)用。?難點:前n項和公式的推導(dǎo)思路的尋找。重點難點復(fù)
2024-11-17 17:13
【總結(jié)】等比數(shù)列的前n項和古印度國王舍罕王打算獎賞國際象棋的發(fā)明人——宰相西薩·班·達依爾。國王問他想要什么,發(fā)明者說:“請在第一個格子里放上1粒麥子,在第二個格子里放上2粒麥子,在第三個格子里放上4粒麥子,在第四個格子里放上8粒麥子,依此類推,每個格子里放的麥粒數(shù)都是前一個格子里放的麥粒數(shù)的2倍,直到第64個格子
【總結(jié)】等比數(shù)列的前n項和第1課時一、新課導(dǎo)入:633222221???????S即,①646332222222???????S,②②-①得即.,12264???SS1264??S由此對于一般的等比數(shù)列,其前項和n112111??????nnqaqaqaaS
2025-08-16 01:37
【總結(jié)】等比數(shù)列的前n項和教學(xué)過程導(dǎo)入新課師國際象棋起源于古代印度.相傳國王要獎賞國際象棋的發(fā)明者.這個故事大家聽說過嗎?生知道一些,踴躍發(fā)言師“請在第一個格子里放上1顆麥粒,第二個格子里放上2顆麥粒,第三個格子里放上4顆麥粒,以此類推.每一個格子里放的麥粒都是前一個格子里放的麥粒的2倍.直到第64個
2024-11-19 21:23
【總結(jié)】2020屆高考數(shù)學(xué)復(fù)習(xí)強化雙基系列課件36《等差數(shù)列與等比數(shù)列的綜合問題》課前熱身:30,37,32,35,34,33,36,(),38的特點,在括號內(nèi)適當?shù)囊粋€數(shù)是_____.x的方程x2-x+a=0和x2-x+b=0(a,b∈R且a≠b)的四
2025-11-02 08:49
【總結(jié)】第一頁,編輯于星期六:點三十四分。,2.4等比數(shù)列第一課時等比數(shù)列的概念及通項公式,第二頁,編輯于星期六:點三十四分。,,登高攬勝拓界展懷,課前自主學(xué)習(xí),第三頁,編輯于星期六:點三十四分。,第四頁,編...
2025-10-13 18:53