【摘要】數(shù)列與不等式舉例(放縮法)1、構(gòu)造等差數(shù)列,完成放縮。例1:已知數(shù)列,滿足,。(1)證明:;(2)設(shè)為數(shù)列的前項(xiàng)和,證明:。分析:(1),可證是單調(diào)減少的,即;,猜測應(yīng)放大為一個等差數(shù)列,公差為。將化為,即證。(2)由(1)得,所以。兩邊平方得,猜想放大為一個等差數(shù)列,公差為2。將轉(zhuǎn)化為只需證。練習(xí):1、(2015學(xué)年第一學(xué)期諸暨期末)已
2024-08-05 01:55
【摘要】精品資源數(shù)列中的不等式恒成立不等式的恒成立問題是學(xué)生較難理解和掌握的一個難點(diǎn),以數(shù)列為載體的不等式恒成立問題的檔次更高、綜合性更強(qiáng),是高三第二輪復(fù)習(xí)中不可多得的一個專題.例1:(2003年新教材高考題改編題)設(shè)為常數(shù),數(shù)列的通項(xiàng)公式為,若對任意不等式恒成立,求的取值范圍.解:,故等價于. ① ⑴當(dāng)時,①式即為 ,此式對恒成立,故.(注意小于最小值,為什么不能
2024-08-05 02:18
【摘要】第一篇:數(shù)列----利用函數(shù)證明數(shù)列不等式 數(shù)列已知數(shù)列{an}的前n項(xiàng)和為Sn,且a2an=S2+Sn對一切正整數(shù)n都成立。(Ⅰ)求a1,a2的值;(Ⅱ)設(shè)a10,數(shù)列{lg大值。 2已知數(shù)列...
2024-10-28 03:31
【摘要】數(shù)列與不等式的綜合問題 測試時間:120分鐘 滿分:150分解答題(本題共9小題,共150分,解答應(yīng)寫出文字說明、證明過程或演算步驟)1.[2016·銀川一模](本小題滿分15分)在等差數(shù)列{an}中,a1=3,其前n項(xiàng)和為Sn,等比數(shù)列{bn}的各項(xiàng)均為正數(shù),b1=1,公比為q(q≠1),且b2+S2=12,q=.(1)求an與bn;(2)證明:≤++…+&
2025-05-12 02:51
【摘要】數(shù)列不等式證明的幾種方法數(shù)列和不等式都是高中數(shù)學(xué)重要內(nèi)容,這兩個重點(diǎn)知識的聯(lián)袂、交匯融合,更能考查學(xué)生對知識的綜合理解與運(yùn)用的能力。這類交匯題充分體現(xiàn)了“以能力立意”的高考命題指導(dǎo)思想和“在知識網(wǎng)絡(luò)交匯處”設(shè)計(jì)試題的命題原則。下面就介紹數(shù)列不等式證明的幾種方法,供復(fù)習(xí)參考。一、巧妙構(gòu)造,利用數(shù)列的單調(diào)性例1.對任意自然數(shù)n,求證:。證明:構(gòu)造數(shù)列。所以,即為單調(diào)遞增數(shù)列
2024-09-02 16:02
【摘要】數(shù)列的通項(xiàng)公式及求和通項(xiàng)的求法{特殊數(shù)列{等差數(shù)列等比數(shù)列一般數(shù)列an=S1(n=1),Sn-Sn-1(n≥2).累加若an-an-1=f(n)累積1?nnaa=f(n)湊等比an=pan-1+q猜想、
2024-09-04 15:41
【摘要】第一篇:放縮法與數(shù)列不等式的證明 2017高三復(fù)習(xí)靈中黃老師的專題 放縮法證明數(shù)列不等式 編號:001引子:放縮法證明數(shù)列不等式歷來是高中數(shù)學(xué)的難點(diǎn),在高考數(shù)列試題中經(jīng)常扮演壓軸的角色。由于放縮...
2024-10-28 03:17
【摘要】本課件為基于精確校對的word書稿制作的“逐字編輯”課件,使用時欲修改課件,請雙擊對應(yīng)內(nèi)容,進(jìn)入可編輯狀態(tài)。如果有的公式雙擊后無法進(jìn)入可編輯狀態(tài),請單擊選中此公式,點(diǎn)擊右鍵、“切換域代碼”,即可進(jìn)入編輯狀態(tài)。修改后再點(diǎn)擊右鍵、“切換域代碼”,即可退出編輯狀態(tài)。個別學(xué)科的部分圖片不可編輯,特此說明。專題三不等式、數(shù)列
2025-02-23 15:18
【摘要】第一篇:用放縮法證明數(shù)列求和中的不等式 用放縮法證明數(shù)列求和中的不等式 近幾年,高考試題常把數(shù)列與不等式的綜合題作為壓軸題,而壓軸題的最后一問又重點(diǎn)考查用放縮法證明不等式,這類試題技巧性強(qiáng),難度大...
2024-10-28 05:08
【摘要】......1、已知函數(shù)在上的最小值為,,是函數(shù)圖像上的兩點(diǎn),且線段的中點(diǎn)P的橫坐標(biāo)為.??(1)求證:點(diǎn)P的縱坐標(biāo)是定值;??(2)若數(shù)列的通項(xiàng)公式為,求數(shù)列的前m項(xiàng)和
2025-05-13 05:41
【摘要】第一篇:構(gòu)造函數(shù)證明數(shù)列不等式 構(gòu)造函數(shù)證明數(shù)列不等式ln2ln3ln4ln3n5n+6+++L+n3n-(n?N*).:23436 :(1)a32,a+a+L+(n32)a2(n+1)23n...
2024-10-31 14:50
【摘要】第一篇:放縮法證明數(shù)列不等式 放縮法證明不等式 1、設(shè)數(shù)列{an}的前n項(xiàng)的和Sn= 43an- 13′ 2n n+ 1+ 3(n=1,2,3,L) n (Ⅰ)求首項(xiàng)a1與通項(xiàng)an...
2024-10-28 04:58
【摘要】數(shù)列與不等式交匯題型的分析及解題策略【命題趨向】數(shù)列與不等式交匯主要以壓軸題的形式出現(xiàn),試題還可能涉及到與導(dǎo)數(shù)、、前n項(xiàng)和公式以及二者之間的關(guān)系、等差數(shù)列和等比數(shù)列、歸納與猜想、數(shù)學(xué)歸納法、比較大小、不等式證明、參數(shù)取值范圍的探求,、融合與遷移,考查學(xué)生數(shù)學(xué)視野的廣度和進(jìn)一步學(xué)習(xí)數(shù)學(xué)的潛能.近年來加強(qiáng)了對遞推數(shù)列考查的力度,這點(diǎn)應(yīng)當(dāng)引起我們高度的重視.如08年北京文20題(12分)中檔偏
【摘要】第一篇:導(dǎo)數(shù)與數(shù)列不等式的綜合證明問題 導(dǎo)數(shù)與數(shù)列不等式的綜合證明問題 典例:(2017全國卷3,21)已知函數(shù)f(x)=x-1-alnx。(1)若f(x)30,求a的值; (2)設(shè)m為整數(shù),且...
2024-10-28 18:52