【總結(jié)】圓錐曲線知識點小結(jié):橢圓:平面內(nèi)與兩個定點的距離之和等于定長(大于)的點的軌跡叫做橢圓。這兩個定點叫做橢圓的焦點,兩焦點的距離叫做橢圓的焦距。數(shù)學(xué)語言:常數(shù)2a=,軌跡是線段;常數(shù)2a,軌跡不存在;雙曲線:平面內(nèi)與兩個F1,F(xiàn)2的距離之差的絕對值等于常數(shù)(小于||F1F2)的點的軌跡叫做雙曲線。這兩個定點叫做雙曲線的焦點,兩焦點的距離叫做雙曲線的焦距。數(shù)學(xué)語言
2025-08-10 15:54
【總結(jié)】1 橢 圓典例精析題型一 求橢圓的標準方程【例1】已知點P在以坐標軸為對稱軸的橢圓上,點P到兩焦點的距離分別為和453,過P作長軸的垂線恰好過橢圓的一個焦點,求橢圓的方程.253【解析】故所求方程為+=1或+=1.x253y2103x210y25【點撥】(1)在求橢圓的標準方程
2025-04-17 12:54
【總結(jié)】圓錐曲線直線與圓一、考點內(nèi)容1、求直線斜率方法(1)知直線傾斜角,則斜率即傾斜角為的直線沒有斜率(2)知直線過兩點,,則斜率(3)知直線一般式方程,則斜率知直線斜截式方程,可以直接寫出斜率2、求直線方程方法——點斜式知直線過點,斜率為,則直線方程為__________________,化簡即可!特別在求曲線在點處切線方程,往往用點斜式!4、平行與垂
2025-06-22 23:13
【總結(jié)】范文范例參考攻克圓錐曲線解答題的策略1.直線方程的形式(1)直線方程的形式有五件:點斜式、兩點式、斜截式、截距式、一般式。(2)與直線相關(guān)的重要內(nèi)容①傾斜角與斜率②點到直線的距離③夾角公式:(3)弦長公式直線上兩點間的距離:或(4)兩條直線的位置關(guān)系①=-1②2、圓錐曲線方程及性質(zhì)(1)、橢圓的方程的形式有
2025-03-25 00:04
【總結(jié)】......圓錐曲線提高題1.設(shè)拋物線的焦點為,,則到該拋物線準線的距離為_____________。解析:利用拋物線的定義結(jié)合題設(shè)條件可得出p的值為,B點坐標為()所以點B到拋物線準線的距離為,本題主要考察拋物線的定義
2025-03-25 00:03
【總結(jié)】圓錐曲線選擇題1.過雙曲線的右頂點作斜率為-1的直線,該直線與雙曲線的兩條漸近線的交點分別為,若,則此雙曲線的離心率是()A.B.C.2D.2.已知是拋物線上一動點,則點到直線和軸的距離之和的最小值是()A.B.C.D.23.已知點是雙曲線的左焦點,點是該雙曲線的右頂點,過且垂直于軸的直線與雙
2025-08-05 04:26
【總結(jié)】2022屆高考數(shù)學(xué)復(fù)習(xí)強化雙基系列課件77《圓錐曲線-軌跡方程》基本知識概要:一、求軌跡的一般方法:1.直接法:如果動點運動的條件就是一些幾何量的等量關(guān)系,這些條件簡單明確,易于表述成含x,y的等式,就得到軌跡方程,這種方法稱之為直接法。用直接法求動點軌跡一般有建系,設(shè)點,列式,化簡,證明五個步驟,最后的證明可以省
2025-07-24 10:09
【總結(jié)】圓錐曲線定義在高考中的應(yīng)用高二數(shù)學(xué)高惠玲2020年10月24日復(fù)習(xí)?橢圓第一定義:?雙曲線第一定義:第一定義第二定義?圓錐曲線統(tǒng)一定義:平面內(nèi)到定點的距離與到定直線的距離之比是常數(shù)e的點的軌跡當(dāng)01時
2024-11-12 18:53
【總結(jié)】讓更多的孩子得到更好的教育高考沖刺:直線與圓錐曲線的位置關(guān)系編稿:辛文升審稿:孫永釗【高考展望】,是高考必考內(nèi)容;;;,需要強化練習(xí),形成必要的技巧和技能?!局R升華】【高清課堂:直線與圓錐曲線369155知識要點】知識點一:直線與圓錐曲線的位置關(guān)系:直線與圓錐曲線的
2025-06-08 00:18
【總結(jié)】......圓錐曲線專題練習(xí)一、選擇題,則到另一焦點距離為()A.B.C.D.2.若橢圓的對稱軸為
2025-06-24 02:09
【總結(jié)】......直線與圓一、考點內(nèi)容1、求直線斜率方法(1)知直線傾斜角,則斜率即傾斜角為的直線沒有斜率(2)知直線過兩點,,則斜率(3)知直線一般式方程,則斜率知直線斜截式方程,可以直接寫出斜率2、求直線方程方法——點斜
2025-06-22 15:57
【總結(jié)】高三《圓錐曲線》單元測試一、選擇題:(共12小題,每小題5分共60分)1.已知焦點在x軸上的橢圓的離心率為,它的長軸長等于圓的半徑,則橢圓的標準方程是 A. B. C. D.2.拋物線的焦點為F,P為其上一點,O為坐標原點,若為等腰三角形,則這樣的點P的個數(shù)為( )A.2 B.3 C.4 D.63.已知向量若與的夾角為,
2025-07-24 20:00
【總結(jié)】數(shù)學(xué)高考圓錐曲線壓軸題經(jīng)典預(yù)測一、圓錐曲線中的定值問題★★橢圓C:+=1(a>b>0)的離心率e=,a+b=3.(Ⅰ)求橢圓C的方程;(Ⅱ)如圖,A,B,D是橢圓C的頂點,P是橢圓C上除頂點外的任意點,直線DP交x軸于點N直線AD交BP于點M,設(shè)BP的斜率為k,MN的斜率為m,證明2m-k為定值.★★如圖,橢圓C:+=1(a>b>0)經(jīng)過點P(1,),離心率e=,
2025-04-17 01:45
【總結(jié)】 圓錐曲線高考??碱}型:一、基本概念、基本性質(zhì)題型二、平面幾何知識與圓錐曲線基礎(chǔ)知識的結(jié)合題型三、直線與圓錐曲線的相交關(guān)系題型(一)中點、中點弦公式(二)弦長(三)焦半徑與焦點三角形四、面積題型(一)三角形面積(二)四邊形面積五、向量題型(一)向量數(shù)乘形式(二)向量數(shù)量積形式(三)向量加減法運算(四)點分向量
2025-04-17 00:20
【總結(jié)】圓錐曲線選填題目1、為橢圓上一點,分別是圓和上的點,則的取值范圍是()A. B. C. D.2、已知,,是橢圓上一點,則的最大值為________.3、【中點弦問題】已知雙曲線的中心為原點,是的焦點,過的直線與相交于,兩點,且的中點為,則的方程為()A. B. C. D.4、如圖,在等腰梯形中,,且.設(shè),,以,為焦