【總結(jié)】?A?lOP特別地,若,則與所成的角是直角,若或,則與所成的角是零角。??lll??//l??l?一條直線與一個平面相交但不垂直,這條直線叫做這個平面的斜線,斜線
2025-08-05 10:08
【總結(jié)】吉林省松原市實驗高級中學(xué)王楓1、斜線在平面內(nèi)的射影(1)點在平面內(nèi)的射影過一點向平面引垂線,垂足叫做這點在這個平面內(nèi)的射影.P?Q(2)平面的斜線、斜足、點到平面的斜線段一條直線和一個平面相交,但不和這個平面垂直時,這條直線叫做平面的斜線,斜線和平面的交點叫斜足.從平面外一點向平面引斜線,這點與斜足間
2025-07-24 03:27
【總結(jié)】學(xué)士學(xué)位論文求異面直線距離的幾種方法學(xué)士學(xué)位論文BACHELOR’STHESIS1摘要本論
2025-08-19 10:17
【總結(jié)】DCBAO12有公共頂點,兩邊互為反向延長線,這樣的兩個角叫做對頂角.對頂角相等.對頂角2、判斷下列圖形中哪對1,2是對頂角???1212121、你能舉出生活中包含對頂角的例子嗎?有一個
2025-11-09 18:34
【總結(jié)】構(gòu)造異面直線所成角的幾種方法異面直線所成角的大小,是由空間任意一點分別引它們的平行線所成的銳角(或直角)來定義的.準(zhǔn)確選定角的頂點,平移直線構(gòu)造三角形是解題的重要環(huán)節(jié).本文舉例歸納幾種方法如下,供參考.一、抓異面直線上的已知點過一條異面直線上的已知點,引另一條直線的平行線(或作一直線并證明與另一直線平行),往往可以作為構(gòu)造異面直線所成角的試探目標(biāo).例1(2005年全國高考福建
2025-03-25 06:43
【總結(jié)】學(xué)士學(xué)位論文BACHELOR’STHESIS 學(xué)士學(xué)位論文求異面直線距離的幾種方法2摘要本論文分別借用向量方法,平行六面體的高,向量的射影,點
2025-06-20 01:34
【總結(jié)】直線與平面所成的角與二面角(二)-——二面角與平面和平面的垂直關(guān)系1二面角及二面角的平面角平面的一條直線把平面分為兩部分,其中的每一部分都叫做一個半平面。從一條直線出發(fā)的兩個半平面所組成的圖形叫做二面角。(1)半平面——(2)二面角——llαl
2025-08-04 10:03
【總結(jié)】......《直線和平面所成的角》練習(xí)題21、正方體中,(1)求和底面所成的角正切值;()(2)求和面所成的角的正切值。()E2、正方體中,分別是和中點,是的中點,(1)求和
2025-03-25 06:30
【總結(jié)】yxo提問:1.若兩條直線的斜率都不存在,說出兩直線平行?或重合的充要條件?3、區(qū)分以下兩組直線的相交程度用什么量刻畫?1234?1l2l3l4l1?3?2?4?1?3?2?4?觀察下列兩組相交直線,自己下定義以便區(qū)分
2025-10-31 01:19
【總結(jié)】綜合法求直線與平面所成的角方法:直線與平面所成的角、B到平面α的距離分別為1和2,A、B兩點在α內(nèi)的射影之間距離為,求直線AB和平面α所成的角..解 (1)如圖①,當(dāng)A、B位于平面α同側(cè)時,由點A、B分別向平面α作垂線,垂足分別為A1、B1,則AA1=1,BB1=2,B1A1=.過點A作AH⊥BB1于H,則AB和α所成角即為∠∠BAH==.∴∠BAH=30°.(
2025-06-25 03:31
【總結(jié)】第二講:立體幾何中的向量方法——利用空間向量求直線與平面所成的角大家知道,立體幾何是高中數(shù)學(xué)學(xué)習(xí)的一個難點,以往學(xué)生學(xué)習(xí)立體幾何時,主要采取“形到形”的綜合推理方法,即根據(jù)題設(shè)條件,將空間圖形轉(zhuǎn)化為平面圖形,再由線線,線面等關(guān)系確定結(jié)果,這種方法沒有一般規(guī)律可循,對人的智力形成極大的挑戰(zhàn),技巧性較強,致使大多數(shù)學(xué)生都感到束手無策。高中新教材中,
2025-04-17 07:24
【總結(jié)】第二課時直線和平面所成的角直線與平面垂直的判定問題提出定理分別是什么?定義:如果一條直線與平面內(nèi)的任意一條直線都垂直,則稱這條直線與這個平面垂直.定理:如果一條直線和一個平面內(nèi)的兩條相交直線都垂直,那么這條直線垂直于這個平面.,對于直線與平面垂直的情形,我們已
2025-08-16 01:39
【總結(jié)】菜單新課標(biāo)·理科數(shù)學(xué)(廣東專用)利用空間向量法求直線與平面所成的角的方法:(1)分別求出斜線和它在平面內(nèi)的射影的方向向量,轉(zhuǎn)化為求兩個方向向量的夾角(或其補角);(2)通過平面的法向量來求,即求出斜線的方向向量與平面的法向量所夾的銳角,取其余角就是斜線和平面所成的角.菜
2025-08-05 03:44
【總結(jié)】第九章直線、平面、簡單幾何體第講(第一課時)考點搜索●直線和平面所成的角的概念與計算●二面角、二面角的平面角的概念,平面角大小的計算高考高考猜想1.利用幾何或向量方法求直線和平面所成的角、二面角的平面角.2.轉(zhuǎn)化角的條件,探求角的范圍.1.一個平面的斜線和它在這個平面內(nèi)的_
2025-05-10 21:38
【總結(jié)】βabABCD設(shè)異面直線a、b的夾角為θcosθ=??AB,CDcos||=AB·CD·AB||CD||θ=??AB,CD或θ=π-?
2025-05-14 22:58