【總結(jié)】1.如圖,在正方體中,異面直線與所成的角為A.B.C.D.【答案】D【解析】試題分析:如圖所示,連接B1C,則B1C∥A1D,B1C⊥BC1,∴A1D⊥BC1,∴A1D與BC1所成的角為90°.故選:D.考點(diǎn):異面直線及其所成的角2.已知平行六面體ABCD-A1B1C1
2025-03-25 01:47
【總結(jié)】異面直線所成的角的求法法一:平移法例1:在正方體中,求下列各對異面直線所成的角。(1)與BC;?。?)與; (3)與AC。法二:中位線例2:在空間四邊形ABCD中,AB=CD,且ABCD,點(diǎn)M、N分別為BC、AD的中點(diǎn),求直線AB與MN所成的角。變式:在空間四邊形ABCD中,點(diǎn)M、N分別為BC、AD的中點(diǎn),AB=
2025-06-22 06:44
【總結(jié)】....異面直線所成角問題1.[2016·全國卷Ⅰ]平面α過正方體ABCD-A1B1C1D1的頂點(diǎn)A,α∥平面CB1D1,α∩平面ABCD=m,α∩平面ABB1A1=n,則m,n所成角的正弦值為( )A.B.C.D.[解析]A 在正方體
【總結(jié)】§1.10斜線在平面上的射影,直線和平面所成的角一、素質(zhì)教育目標(biāo)(一)知識教學(xué)點(diǎn)1.點(diǎn)在平面上的射影,點(diǎn)到平面的垂線段.2.有關(guān)平面的斜線的幾個(gè)概念.3.有關(guān)射影的幾個(gè)概念.4.射影定理.5.有關(guān)直線和平面成角的幾個(gè)概念.(二)能力訓(xùn)練點(diǎn)1.加深對數(shù)學(xué)概念的理解掌握.2.初步學(xué)會依據(jù)直線與
2025-10-03 14:41
【總結(jié)】授課:曲靖一中韓睿復(fù)習(xí)定義探索方法歸納小結(jié)反饋練習(xí)例題1例題2練習(xí)1練習(xí)3練習(xí)2ab′bO一.定義:注意:異面直線所成角的范圍是直線a、b是異面直線,經(jīng)過空間任意一點(diǎn)O,分別引直線a′∥a,b′∥a′和b′
2025-11-08 16:28
【總結(jié)】yxo提問:1.解析幾何中怎樣判斷兩條直線的平行和垂直?直線的斜率或以方程的特點(diǎn)觀察2、區(qū)分以下兩組直線的相交程度用什么量刻畫?12341l2l3l4l1?3?2?4?1?3?2?4?觀察下列兩組相交直線,自己下定義以便區(qū)分兩組
2025-05-05 18:40
【總結(jié)】異面直線及所成的角一、基礎(chǔ)知識2、空間兩條直線的位置關(guān)系:異面直線相交直線平行直線共面直線1、異面直線的定義:不同在任何一個(gè)平面內(nèi)的兩條直線叫作異面直線空間兩條直線連結(jié)平面內(nèi)一點(diǎn)與平面外一點(diǎn)的直線,和這個(gè)平面內(nèi)不經(jīng)過此點(diǎn)的直線是異面直線3、異面直線的畫法:平面襯托法
2025-07-26 10:31
【總結(jié)】課件介紹內(nèi)容:直線與平面所成的角平面的斜線與平面所成角的定義及其應(yīng)用最小角原理探究學(xué)習(xí)及其簡單應(yīng)用特點(diǎn):充分應(yīng)用多媒體技術(shù)使立體圖形簡單直觀。(請點(diǎn)擊鼠標(biāo)進(jìn)入)正在進(jìn)入立體幾何平面的斜線與平面所成的角?復(fù)習(xí)回顧問題??線在面內(nèi)?
2025-07-25 09:00
【總結(jié)】1、理解直線和平面所成的角的定義;2、掌握較簡單的線面角的畫法;3、了解并會應(yīng)用最小角定理;4、掌握求線面角的方法。平面的一條斜線和它在平面上的射影所成的銳角,叫做這條直線和這個(gè)平面所成的角。簡稱線面角??1、一條直線垂直與平面,它們所成的角是直角;2、一條直線和平面平行,或在平面內(nèi),它們所
2025-07-25 06:28
【總結(jié)】空間中直線與直線之間的位置關(guān)系習(xí)題課問題一:異面直線的判定例m、n為異面直線,m?平面α,n?平面β,α∩β=l,則l()?A.與m、n都相交?B.與m、n中至少一條相交?C.與m、n都不相交?D.與m、n中的一條直線相交?例P、Q、R、S分別是
2025-08-05 06:48
【總結(jié)】分析法與綜合法1、分析法與綜合法的定義1、定義 所謂分析法,是指“執(zhí)果索因”的思維方法,即從結(jié)論出發(fā),不斷地去尋找需知,直至達(dá)到已知事實(shí)為止的方法. 分析法的思維全貌可概括為下面形式: “結(jié)論需知需知…已知”. 所謂綜合法,是指“由因?qū)Ч钡乃季S方法,即從已知條件出發(fā),不斷地展開思考,去探索結(jié)論的方法. 綜合法的思維過程的全貌可概括為下面形式:
2025-06-16 04:08
【總結(jié)】劉洋空間兩條直線的位置關(guān)系:0000900????位置關(guān)系圖形所成的角平行相交異面經(jīng)過空間任意一點(diǎn)分別作與兩條異面直線平行的直線,這兩條相交直線的夾角叫做兩條異面直線所成的角。一、定義?mnn′?mnm′m
2025-08-05 10:53
【總結(jié)】第二課時(shí)直線和平面所成的角直線與平面垂直的判定問題提出定理分別是什么?定義:如果一條直線與平面內(nèi)的任意一條直線都垂直,則稱這條直線與這個(gè)平面垂直.定理:如果一條直線和一個(gè)平面內(nèi)的兩條相交直線都垂直,那么這條直線垂直于這個(gè)平面.,對于直線與平面垂直的情形,我們已
2025-08-16 01:39
【總結(jié)】課題:異面直線所成的角教材:中等職業(yè)教育課程改革國家規(guī)劃新教材《數(shù)學(xué)》(基礎(chǔ)模塊)下冊(修訂本)(語文出版社)一、教材分析“異面直線所成的角”是中等職業(yè)教育課程改革國家規(guī)劃新教材,語文出版社《數(shù)學(xué)》(基礎(chǔ)模塊)下冊(修訂本)第九單元第二節(jié)第2部分,“直線與直線所成的角”,主要的內(nèi)容是認(rèn)識異面直線以及掌握異面直線夾角的定義和求解方法.(1),、培養(yǎng)學(xué)生
2025-04-17 01:12
【總結(jié)】滁州市應(yīng)用技術(shù)學(xué)校數(shù)學(xué)教研組謝懷年一、復(fù)習(xí):?空間的兩條直線的位置關(guān)系1.兩條直線平行2.兩條直線相交3.兩條直線異面abAababβA共面異面?異面直線的畫法:平面襯托法ABab我們規(guī)定:兩條平行
2025-08-05 00:42