【摘要】綜合法求直線與平面所成的角方法:直線與平面所成的角、B到平面α的距離分別為1和2,A、B兩點(diǎn)在α內(nèi)的射影之間距離為,求直線AB和平面α所成的角..解 (1)如圖①,當(dāng)A、B位于平面α同側(cè)時,由點(diǎn)A、B分別向平面α作垂線,垂足分別為A1、B1,則AA1=1,BB1=2,B1A1=.過點(diǎn)A作AH⊥BB1于H,則AB和α所成角即為∠∠BAH==.∴∠BAH=30°.(
2025-06-28 03:31
【摘要】第二講:立體幾何中的向量方法——利用空間向量求直線與平面所成的角大家知道,立體幾何是高中數(shù)學(xué)學(xué)習(xí)的一個難點(diǎn),以往學(xué)生學(xué)習(xí)立體幾何時,主要采取“形到形”的綜合推理方法,即根據(jù)題設(shè)條件,將空間圖形轉(zhuǎn)化為平面圖形,再由線線,線面等關(guān)系確定結(jié)果,這種方法沒有一般規(guī)律可循,對人的智力形成極大的挑戰(zhàn),技巧性較強(qiáng),致使大多數(shù)學(xué)生都感到束手無策。高中新教材中,
2025-04-20 07:24
【摘要】?A?lOP特別地,若,則與所成的角是直角,若或,則與所成的角是零角。??lll??//l??l?一條直線與一個平面相交但不垂直,這條直線叫做這個平面的斜線,斜線
2024-08-16 10:08
【摘要】菜單新課標(biāo)·理科數(shù)學(xué)(廣東專用)利用空間向量法求直線與平面所成的角的方法:(1)分別求出斜線和它在平面內(nèi)的射影的方向向量,轉(zhuǎn)化為求兩個方向向量的夾角(或其補(bǔ)角);(2)通過平面的法向量來求,即求出斜線的方向向量與平面的法向量所夾的銳角,取其余角就是斜線和平面所成的角.菜
2024-08-16 03:44
【摘要】山東省嘉祥縣第四中學(xué)曾慶坤1、斜線在平面內(nèi)的射影(1)點(diǎn)在平面內(nèi)的射影過一點(diǎn)向平面引垂線,垂足叫做這點(diǎn)在這個平面內(nèi)的射影.P?Q(2)平面的斜線、斜足、點(diǎn)到平面的斜線段一條直線和一個平面相交,但不和這個平面垂直時,這條直線叫做平面的斜線,斜線和平面的交點(diǎn)叫斜足.從平面外一點(diǎn)向平面引
2024-11-13 04:00
【摘要】第二課時直線和平面所成的角直線與平面垂直的判定復(fù)習(xí)回顧直線和平面垂直的定義:如果一條直線與平面內(nèi)的任意一條直線都垂直,則稱這條直線與這個平面垂直.直線和平面垂直的判定定理:如果一條直線和一個平面內(nèi)的兩條相交直線都垂直,那么這條直線垂直于這個平面.直線和平面垂直的性質(zhì)
2025-01-21 18:34
【摘要】空間角專題復(fù)習(xí)●知識梳理一、異面直線所成的角及求法(1)定義:在空間任意取一點(diǎn),過該點(diǎn)分別作兩異面直線的平行線所成的銳角或直角稱為兩異面直線所成的角.(2)取值范圍:若θ是異面直線a和b所成的角,則其取值范圍是θ∈(0,],當(dāng)θ=時,稱異面直線a和b垂直,記為a⊥b.(3)求法:平移法:將兩異面直線中的一條或兩條平移至某特殊點(diǎn)后,構(gòu)造三角形,通過解該三角形而求其大小;
2025-04-20 01:12
【摘要】X直線和平面所成的角一條直線和一個平面相交,但不和這個平面垂直,這條直線叫做這個平面的斜線,斜線和平面的交點(diǎn)叫做斜足。斜線上一點(diǎn)與斜足間的線段叫做這點(diǎn)到這個平面的斜線段。ACB過斜線上斜足以外的一點(diǎn)向平面引垂線,過垂
2024-08-16 10:51
【摘要】空間角專題復(fù)習(xí)●知識梳理一、異面直線所成的角及求法(1)定義:在空間任意取一點(diǎn),過該點(diǎn)分別作兩異面直線的平行線所成的銳角或直角稱為兩異面直線所成的角.(2)取值范圍:若θ是異面直線a和b所成的角,則其取值范圍是θ∈(0,],當(dāng)θ=時,稱異面直線a和b垂直,記為a⊥b.(3)求法:平移法:將兩異面直線中的一條或兩條平移至某特殊點(diǎn)后,構(gòu)造三角形,通過解該三角形而求其大?。?/span>
2025-04-19 23:16
【摘要】【課題】直線與直線、直線與平面、平面與平面所成的角【教學(xué)目標(biāo)】知識目標(biāo):(1)了解兩條異面直線所成的角的概念;(2)理解直線與平面垂直、直線與平面所成的角的概念,二面角及其平面角的概念.能力目標(biāo):培養(yǎng)學(xué)生的空間想象能力和數(shù)學(xué)思維能力.【教學(xué)重點(diǎn)】異面直線的概念與兩條異面直線所成的角的概念、直線與平
2024-12-13 03:28
【摘要】課件介紹內(nèi)容:直線與平面所成的角平面的斜線與平面所成角的定義及其應(yīng)用最小角原理探究學(xué)習(xí)及其簡單應(yīng)用特點(diǎn):充分應(yīng)用多媒體技術(shù)使立體圖形簡單直觀。(請點(diǎn)擊鼠標(biāo)進(jìn)入)正在進(jìn)入立體幾何平面的斜線與平面所成的角平面的斜線與平面所成的角平面的斜線與平面所成的角?復(fù)習(xí)回顧
2024-11-15 09:00
【摘要】第二課時直線和平面所成的角直線與平面垂直的判定問題提出定理分別是什么?直線和平面垂直的定義:如果一條直線與平面內(nèi)的任意一條直線都垂直,則稱這條直線與這個平面垂直.直線和平面垂直的定理:如果一條直線和一個平面內(nèi)的兩條相交直線都垂直,那么這條直線垂直于
2024-08-04 04:30
【摘要】......《直線和平面所成的角》練習(xí)題21、正方體中,(1)求和底面所成的角正切值;()(2)求和面所成的角的正切值。()E2、正方體中,分別是和中點(diǎn),是的中點(diǎn),(1)求和
2025-03-28 06:30
【摘要】立體幾何立體幾何立體幾何立體幾何兩個平面成一定夾角的實(shí)例:打開的筆記本電腦;打開的課本等等.?一.二面角平面內(nèi)的一條直線把這個平面分成兩個部分,其中的每一部分都分別叫做一個半平面.從一條直線出發(fā)的兩個半平面所組成的圖形叫做二面角.?AB
2024-08-05 17:06
【摘要】直線與平面所成的角與二面角(二)-——二面角與平面和平面的垂直關(guān)系1二面角及二面角的平面角平面的一條直線把平面分為兩部分,其中的每一部分都叫做一個半平面。從一條直線出發(fā)的兩個半平面所組成的圖形叫做二面角。(1)半平面——(2)二面角——llαl
2024-08-15 10:03