【總結】、直線與平面、平面與平面所成的角§空間兩條直線的位置關系:位置關系圖形所成的角平行相交異面兩條相交直線所成的夾角是怎樣定義的呢?是這兩條直線相交所成的最小的正角。動腦筋一、兩條異面直線所成的角定義:經過空間任意一點分別作與兩條異面直線平行的直線,這兩條相交
2025-08-05 09:41
【總結】1.線線角——異面直線所成的角直線a,b是異面直線,經過空間任意一點o,分別引直線a1∥a,b1∥b,我們把直線a1和b1所成的銳角(或直角)叫做異面直線a和b所成的角。]20(?,取值范圍:一.復習pO自一點向平面引垂線,垂足叫做這點在這個平面上的射影;
2025-07-25 06:28
【總結】第九章直線、平面、簡單幾何體第講(第一課時)考點搜索●直線和平面所成的角的概念與計算●二面角、二面角的平面角的概念,平面角大小的計算高考高考猜想1.利用幾何或向量方法求直線和平面所成的角、二面角的平面角.2.轉化角的條件,探求角的范圍.1.一個平面的斜線和它在這個平面內的_
2025-05-10 21:38
【總結】DCBAO12有公共頂點,兩邊互為反向延長線,這樣的兩個角叫做對頂角.對頂角相等.對頂角2、判斷下列圖形中哪對1,2是對頂角???1212121、你能舉出生活中包含對頂角的例子嗎?有一個
2024-11-18 18:34
【總結】異面直線所成角問題1.[2016·全國卷Ⅰ]平面α過正方體ABCD-A1B1C1D1的頂點A,α∥平面CB1D1,α∩平面ABCD=m,α∩平面ABB1A1=n,則m,n所成角的正弦值為( )A.B.C.D.[解析]A 在正方體ABCD-A1B1C1D1外依次再作兩個一樣的正方體,如圖所示,易知AE∥B1D1,AF∥CD1,
2025-07-26 01:46
【總結】一.定義:直線a、b是異面直線,經過空間任意一點O,分別引直線a′∥a,b′∥b。我們把直線a′和b′所成的銳角(或直角)叫做異面直線a和b所成的角.說明:1.a和b所成的角的大小與空間點的選取無關.2.實質:把a和b平行移動使之相交,把抽象的空
2025-09-25 17:39
【總結】1.如圖,在正方體中,異面直線與所成的角為A.B.C.D.【答案】D【解析】試題分析:如圖所示,連接B1C,則B1C∥A1D,B1C⊥BC1,∴A1D⊥BC1,∴A1D與BC1所成的角為90°.故選:D.考點:異面直線及其所成的角2.已知平行六面體ABCD-A1B1C1
2025-03-25 01:47
【總結】異面直線所成的角的求法法一:平移法例1:在正方體中,求下列各對異面直線所成的角。(1)與BC;?。?)與;?。?)與AC。法二:中位線例2:在空間四邊形ABCD中,AB=CD,且ABCD,點M、N分別為BC、AD的中點,求直線AB與MN所成的角。變式:在空間四邊形ABCD中,點M、N分別為BC、AD的中點,AB=
2025-06-22 06:44
【總結】....異面直線所成角問題1.[2016·全國卷Ⅰ]平面α過正方體ABCD-A1B1C1D1的頂點A,α∥平面CB1D1,α∩平面ABCD=m,α∩平面ABB1A1=n,則m,n所成角的正弦值為( )A.B.C.D.[解析]A 在正方體
【總結】§1.10斜線在平面上的射影,直線和平面所成的角一、素質教育目標(一)知識教學點1.點在平面上的射影,點到平面的垂線段.2.有關平面的斜線的幾個概念.3.有關射影的幾個概念.4.射影定理.5.有關直線和平面成角的幾個概念.(二)能力訓練點1.加深對數學概念的理解掌握.2.初步學會依據直線與
2025-10-03 14:41
【總結】授課:曲靖一中韓睿復習定義探索方法歸納小結反饋練習例題1例題2練習1練習3練習2ab′bO一.定義:注意:異面直線所成角的范圍是直線a、b是異面直線,經過空間任意一點O,分別引直線a′∥a,b′∥a′和b′
2024-11-17 16:28
【總結】yxo提問:1.解析幾何中怎樣判斷兩條直線的平行和垂直?直線的斜率或以方程的特點觀察2、區(qū)分以下兩組直線的相交程度用什么量刻畫?12341l2l3l4l1?3?2?4?1?3?2?4?觀察下列兩組相交直線,自己下定義以便區(qū)分兩組
2025-05-05 18:40
【總結】異面直線及所成的角一、基礎知識2、空間兩條直線的位置關系:異面直線相交直線平行直線共面直線1、異面直線的定義:不同在任何一個平面內的兩條直線叫作異面直線空間兩條直線連結平面內一點與平面外一點的直線,和這個平面內不經過此點的直線是異面直線3、異面直線的畫法:平面襯托法
2025-07-26 10:31
【總結】課件介紹內容:直線與平面所成的角平面的斜線與平面所成角的定義及其應用最小角原理探究學習及其簡單應用特點:充分應用多媒體技術使立體圖形簡單直觀。(請點擊鼠標進入)正在進入立體幾何平面的斜線與平面所成的角?復習回顧問題??線在面內?
2025-07-25 09:00
【總結】1、理解直線和平面所成的角的定義;2、掌握較簡單的線面角的畫法;3、了解并會應用最小角定理;4、掌握求線面角的方法。平面的一條斜線和它在平面上的射影所成的銳角,叫做這條直線和這個平面所成的角。簡稱線面角??1、一條直線垂直與平面,它們所成的角是直角;2、一條直線和平面平行,或在平面內,它們所