freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內容

概率論與數(shù)理統(tǒng)計公式-文庫吧

2025-06-08 02:25 本頁面


【正文】 u 每次試驗只有兩種可能結果,發(fā)生或不發(fā)生;u 次試驗是重復進行的,即發(fā)生的概率每次均一樣;u 每次試驗是獨立的,即每次試驗發(fā)生與否與其他次試驗發(fā)生與否是互不影響的。這種試驗稱為伯努利概型,或稱為重伯努利試驗。用表示每次試驗發(fā)生的概率,則發(fā)生的概率為,用表示重伯努利試驗中出現(xiàn)次的概率。第二章 隨機變量及其分布(1)離散型隨機變量的分布律設離散型隨機變量的可能取值為Xk(k=1,2,…)且取各個值的概率,即事件(X=Xk)的概率為P(X=xk)=pk,k=1,2,…,則稱上式為離散型隨機變量的概率分布或分布律。有時也用分布列的形式給出:。顯然分布律應滿足下列條件:(1), (2)。(2)連續(xù)型隨機變量的分布密度設是隨機變量的分布函數(shù),若存在非負函數(shù),對任意實數(shù),有, 則稱為連續(xù)型隨機變量。稱為的概率密度函數(shù)或密度函數(shù),簡稱概率密度。密度函數(shù)具有下面4個性質:1176。 。2176。 。(3)離散與連續(xù)型隨機變量的關系積分元在連續(xù)型隨機變量理論中所起的作用與在離散型隨機變量理論中所起的作用相類似。(4)分布函數(shù)設為隨機變量,是任意實數(shù),則函數(shù)稱為隨機變量X的分布函數(shù),本質上是一個累積函數(shù)。 可以得到X落入?yún)^(qū)間的概率。分布函數(shù)表示隨機變量落入?yún)^(qū)間(– ∞,x]內的概率。分布函數(shù)具有如下性質:1176。 ;2176。 是單調不減的函數(shù),即時,有 ;3176。 , ;4176。 ,即是右連續(xù)的;5176。 。對于離散型隨機變量,;對于連續(xù)型隨機變量, 。(5)八大分布01分布P(X=1)=p, P(X=0)=q二項分布在重貝努里試驗中,設事件發(fā)生的概率為。事件發(fā)生的次數(shù)是隨機變量,設為,則可能取值為。, 其中,則稱隨機變量服從參數(shù)為,的二項分布。記為。當時,,這就是(01)分布,所以(01)分布是二項分布的特例。泊松分布設隨機變量的分布律為,,則稱隨機變量服從參數(shù)為的泊松分布,記為或者P()。泊松分布為二項分布的極限分布(np=λ,n→∞)。超幾何分布隨機變量X服從參數(shù)為n,N,M的超幾何分布,記為H(n,N,M)。幾何分布,其中p≥0,q=1p。隨機變量X服從參數(shù)為p的幾何分布,記為G(p)。均勻分布設隨機變量的值只落在[a,b]內,其密度函數(shù)在[a,b]上為常數(shù),即a≤x≤b 其他,則稱隨機變量在[a,b]上服從均勻分布,記為X~U(a,b)。分布函數(shù)為 a≤x≤b 0, xa, 1, xb。當a≤x1x2≤b時,X落在區(qū)間()內的概率為。指數(shù)分布 ,0, ,其中,則稱隨機變量X服從參數(shù)為的指數(shù)分布。X的分布函數(shù)為 , x0。 記住積分公式:正態(tài)分布設隨機變量的密度函數(shù)為, ,其中、為常數(shù),則稱隨機變量服從參數(shù)為、的正態(tài)分布或高斯(Gauss)分布,記為。具有如下性質:1176。 的圖形是關于對稱的;2176。 當時,為最大值;若,則的分布函數(shù)為。參數(shù)、時的正態(tài)分布稱為標準正態(tài)分布,記為,其密度函數(shù)記為,分布函數(shù)為。是不可求積函數(shù),其函數(shù)值,已編制成表可供查用。Φ(x)=1Φ(x)且Φ(0)=。如果~,則~。 (6)分位數(shù)下分位表:;上分位表:。(7)函數(shù)分布離散型已知的分布列為,的分布列(互不相等)如下:,若有某些相等,則應將對應的相加作為的概率。連續(xù)型先利用X的概率密度fX(x)寫出Y的分布函數(shù)FY(y)=P(g(X)≤y),再利用變上下限積分的求導公式求出fY(y)。第三章 二維隨機變量及其分布(1)聯(lián)合分布離散型如果二維隨機向量(X,Y)的所有可能取值為至多可列個有序對(x,y),則稱為離散型隨機量。設=(X,Y)的所有可能取值為,且事件{=}的概率為pij,稱為=(X,Y)的分布律或稱為X和Y的聯(lián)合分布律。聯(lián)合分布有時也用下面的概率分布表來表示: YXy1y2…yj…x1p11p12…p1j…x2p21p22…p2j…xipi1……這里pij具有下面兩個性質:(1)pij≥0(i,j=1,2,…);(2)連續(xù)型對于二維隨機向量
點擊復制文檔內容
高考資料相關推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1