【總結(jié)】平行四邊形判定第十八章平行四邊形導入新課講授新課當堂練習課堂小結(jié)學練優(yōu)八年級數(shù)學下(RJ)教學課件第2課時平行四邊形的判定(2)學習目標“一組對邊平行且相等的四邊形是平行四邊形”的判定方法.(重點)平行四邊形的性質(zhì)與判定的綜合運用.(難點)數(shù)
2025-06-21 12:28
【總結(jié)】第2課時平行四邊形的性質(zhì)定理3(1)定義:兩條直線平行,其中一條直線上的任一點到另一條直線的,叫做這兩條平行線之間的距離.(2)性質(zhì):平行線之間的距離.S平行四邊形=底×高.3:平行四邊形的對角線.距離處處相等互相平分
2025-06-16 12:10
【總結(jié)】第2章四邊形平行四邊形第1課時平行四邊形的邊、角的性質(zhì)目標突破總結(jié)反思第2章四邊形知識目標平行四邊形知識目標1.觀察實際生活中的平行四邊形,歸納總結(jié)出平行四邊形的定義.2.根據(jù)定義,從平行四邊形的圖形中探究其對應邊、角的性質(zhì)并加以應用.3.利用平行四邊形的性質(zhì),得出“
2025-06-15 12:05
【總結(jié)】第十八章平行四邊形學練考數(shù)學八年級下冊R平行四邊形平行四邊形的判定第1課時平行四邊形的判定
2025-06-17 22:00
【總結(jié)】第十八章平行四邊形數(shù)學8年級下冊R平行四邊形平行四邊形的性質(zhì)第1課時觀察下圖中的小區(qū)的伸縮門,庭院的竹籬笆和載重汽車的防護欄,它們是什么幾何圖形的形象?課前導入你知道什么樣的圖形叫做平行四邊形嗎?兩組對邊分別平行的四邊形叫做平行四邊形.說明定義的兩方面作用:既可以作為性
2025-06-12 12:10
【總結(jié)】平行四邊形的判定第1課時【基礎梳理】平行四邊形的判定:(1)兩組對邊_________的四邊形是平行四邊形.(2)一組對邊___________的四邊形是平行四邊形.分別相等平行且相等:兩組對角_________的四邊形是平行四邊形.:對角線_________的四邊形是平行四邊形.分別
2025-06-12 12:44
【總結(jié)】第2章四邊形平行四邊形第2課時平行四邊形的對角線的性質(zhì)目標突破總結(jié)反思第2章四邊形知識目標平行四邊形知識目標通過對平行四邊形對角線的作圖與測量,掌握平行四邊形對角線互相平分的性質(zhì).目標突破目標掌握平行四邊形對角線的性質(zhì)并能計算或證明
【總結(jié)】平行四邊形的判定第2課時到上一節(jié)課為止我們學習了幾種判定平行四邊形的方法?題.方法..,并能較熟練地應用三角形中位線的性質(zhì)進行有關(guān)的證明和計算.將一根木棒從AB平移到DC,AB與DC之間有何位置關(guān)系、數(shù)量關(guān)系?ABCD四邊形ABCD是什么樣的圖形
2025-06-17 04:01
【總結(jié)】第十八章 平行四邊形 平行四邊形 平行四邊形的性質(zhì)學前溫故新課早知邊形的內(nèi)角和是 .?線平行,同位角 ,內(nèi)錯角 ,同旁內(nèi)角 .?360°相等相等互補邊形:兩組對邊分別 的四邊形是平行四邊形.平行四邊形用 表示.?
2025-06-13 12:19
2025-06-13 12:20
【總結(jié)】平行四邊形的性質(zhì)第十八章平行四邊形導入新課講授新課當堂練習課堂小結(jié)學練優(yōu)八年級數(shù)學下(RJ)教學課件第2課時平行四邊形的對角線的特征學習目標;(重點),滲透轉(zhuǎn)化思想,體會圖形性質(zhì)探究的一般思路.(難點)導入新課一位飽經(jīng)滄桑的老人
2025-06-16 12:28
【總結(jié)】第十八章 平行四邊形 平行四邊形 平行四邊形的性質(zhì)邊形:兩組對邊分別 的四邊形是平行四邊形.平行四邊形用 表示.?邊形的性質(zhì)(1)邊的性質(zhì):對邊 且 ;?(2)角的性質(zhì):對角 ,鄰角 ;?(3)對角線的性質(zhì):對角線
2025-06-12 15:25
【總結(jié)】平行四邊形的判定第2課時【基礎梳理】三角形的中位線:連接三角形兩邊_____的線段叫三角形的中位線.中點三角形的中位線_____于三角形的第三邊,并且等于_____________.平行第三邊的一半【自我診斷】(1)一個三角形只有一條中位線.()×
2025-06-21 04:03
2025-06-12 01:49
【總結(jié)】平行四邊形平行四邊形的判定第2課時平行四邊形的判定(2)第2課時平行四邊形的判定(2)知識目標1.通過利用平行四邊形的定義或前面講到的三個判定定理證明出新的判定方法“一組對邊平行且相等的四邊形是平行四邊形”,并能用這種方法判定平行四邊形.2.在熟練掌握平行四邊形的性質(zhì)和判定方法的基礎上,綜合運用性質(zhì)和判定方
2025-06-16 12:26