【總結(jié)】兩定點(diǎn)F1、F2(|F1F2|=2c)和的距離的等于常數(shù)2a(2a|F1F2|=2c0)的點(diǎn)的軌跡.平面內(nèi)與1.橢圓的定義2.雙曲線的定義平面內(nèi)與兩定點(diǎn)F1、F2(|F1F2|=2c)的距離的差的絕對值等于常數(shù)2a(2a|F1F2|=2c0)?的點(diǎn)軌跡
2024-11-24 16:52
【總結(jié)】第1頁共9頁探究圓錐曲線中離心率的問題離心率是圓錐曲線中的一個(gè)重要的幾何性質(zhì),在高考中頻繁出現(xiàn),下面給同學(xué)們介紹常用的四種解法。一、直接求出a、c,求解e已知標(biāo)準(zhǔn)方程或a、c易求時(shí),可利用離心率公式來求解。ace?例1.過雙曲線C:的左頂點(diǎn)A作斜率為1的直線,若與雙曲線M的兩條漸)0b(1yx2???l近線分別相交于點(diǎn)
2025-03-25 02:38
【總結(jié)】方法總結(jié)求解圓錐曲線離心率的取值范圍求圓錐曲線離心率的取值范圍是高考的一個(gè)熱點(diǎn),也是一個(gè)難點(diǎn),求離心率的難點(diǎn)在于如何建立不等關(guān)系定離心率的取值范圍.一、直接根據(jù)題意建立不等關(guān)系求解.例1:(2008湖南)若雙曲線(a>0,b>0)上橫坐標(biāo)為的點(diǎn)到右焦點(diǎn)的距離大于它到左準(zhǔn)線的距離,則雙曲線離心率的取值范圍是A.(1,2) B.(2,+) C.(1,5)
2025-08-05 08:31
【總結(jié)】標(biāo)準(zhǔn)方程? 范圍?|x|≤a,|y|≤b對稱性?關(guān)于x軸、y軸成軸對稱;關(guān)于原點(diǎn)成中心對稱頂點(diǎn)坐標(biāo)?(a,0)、(-a,0)、(0,b)、(0,-b)焦點(diǎn)坐標(biāo)?(c,0)、(-c,0)半軸長?長半軸長為a,短半軸長為b.ab離心率?
2025-07-15 02:40
【總結(jié)】祝各位莘莘學(xué)子高考成功!高考數(shù)學(xué)考出好成績!橢圓與雙曲線性質(zhì)--(重要結(jié)論)清華附中高三數(shù)學(xué)備課組橢圓1.點(diǎn)P處的切線PT平分△PF1F2在點(diǎn)P處的外角.2.PT平分△PF1F2在點(diǎn)P處的外角,則焦點(diǎn)在直線PT上的射影H點(diǎn)的軌跡是以長軸為直徑的圓,除去長軸的兩個(gè)端點(diǎn).3.以焦點(diǎn)弦PQ為直徑的圓必與對應(yīng)準(zhǔn)線相離.4.以焦點(diǎn)半徑PF1為直徑的圓必與以長軸為直
2025-04-17 13:17
【總結(jié)】......橢圓知識(shí)點(diǎn)【知識(shí)點(diǎn)1】橢圓的概念:在平面內(nèi)到兩定點(diǎn)F1、F2的距離的和等于常數(shù)(大于|F1F2|)的點(diǎn)的軌跡叫橢圓.這兩定點(diǎn)叫做橢圓的焦點(diǎn),兩焦點(diǎn)間的距離叫做焦距.當(dāng)動(dòng)點(diǎn)設(shè)為M時(shí),橢圓即為點(diǎn)集
2025-06-20 08:24
【總結(jié)】橢圓與雙曲線定義的應(yīng)用2.雙曲線的定義:平面內(nèi)與兩個(gè)定點(diǎn)12,FF的距離的差的絕對值等于常數(shù)(小于12FF)的點(diǎn)的軌跡叫做雙曲線.1.橢圓的定義:平面內(nèi)到兩個(gè)定點(diǎn)12,FF的距離的和等于常數(shù)(大于12FF)的點(diǎn)的軌跡叫橢圓.思考一:(課本54PB組第2題)
2025-10-31 00:53
【總結(jié)】江蘇省響水中學(xué)高中數(shù)學(xué)第2章《圓錐曲線與方程》關(guān)于雙曲線的離心率的問題導(dǎo)學(xué)案蘇教版選修1-11、設(shè)雙曲線的一個(gè)焦點(diǎn)F,虛軸的一個(gè)端點(diǎn)B,如果直線FB與雙曲線的一條漸近線垂直則此雙曲線的離心率為2、過雙曲線)0,(12222???babyax的一個(gè)焦點(diǎn)為F作一條漸近線的垂線,垂足為
2024-11-19 17:31
【總結(jié)】橢圓與雙曲線中點(diǎn)弦斜率公式及其推論尤溪文公高級(jí)中學(xué)鄭明淮,.定理1(橢圓中點(diǎn)弦的斜率公式):設(shè)為橢圓弦(不平行軸)的中點(diǎn),則有:證明:設(shè),,則有,兩式相減得:整理得:,即,因?yàn)槭窍业闹悬c(diǎn),所以,所以定理2(雙曲線中點(diǎn)弦的斜率公式):設(shè)為雙曲線弦(不平行軸)的中點(diǎn),則有證明:設(shè),,則有,兩式相減得:整理得:,即,因?yàn)槭窍业闹悬c(diǎn),所以,所以例1、已知橢圓
【總結(jié)】橢圓與雙曲線的對偶性質(zhì)--(會(huì)推導(dǎo)的經(jīng)典結(jié)論)高三數(shù)學(xué)備課組雙曲線1.雙曲線(a>0,b>0)的兩個(gè)頂點(diǎn)為,,與y軸平行的直線交雙曲線于P1、P2時(shí)A1P1與A2P2交點(diǎn)的軌跡方程是.2.過雙曲線(a>0,b>o)上任一點(diǎn)任意作兩條傾斜角互補(bǔ)的直線交雙曲線于B,C兩點(diǎn),則直線BC有定向且(常數(shù)).3.若P為雙曲線(a>0,b>0)右(或左)支上除頂點(diǎn)外的任一點(diǎn),F1,
2025-08-17 04:20
【總結(jié)】圓錐曲線:圓、橢圓、拋物線,雙曲線。拋物線及其標(biāo)準(zhǔn)方程二次函數(shù))0(2????acbxaxy的圖象(示意圖)?拋物線xyoxoy同學(xué)們生活學(xué)習(xí)中見過拋物線的實(shí)例有哪些?噴泉探照燈的燈面平面內(nèi)與一個(gè)定點(diǎn)F和一條定直線l(l不過點(diǎn)F)的距離相等的點(diǎn)
2025-10-08 18:08
【總結(jié)】橢圓典型例題一、已知橢圓焦點(diǎn)的位置,求橢圓的標(biāo)準(zhǔn)方程。例1:已知橢圓的焦點(diǎn)是F1(0,-1)、F2(0,1),P是橢圓上一點(diǎn),并且PF1+PF2=2F1F2,求橢圓的標(biāo)準(zhǔn)方程。解:由PF1+PF2=2F1F2=2×2=4,得2a==1,所以b2=3.所以橢圓的標(biāo)準(zhǔn)方程是+=1.2.已知橢圓的兩個(gè)焦點(diǎn)為F1(-1,0),F(xiàn)2(1,0),且2a=10,求橢圓的標(biāo)準(zhǔn)方程
2025-03-25 04:50
【總結(jié)】圓錐曲線測試題一、選擇題(共12題,每題5分)1已知橢圓的兩個(gè)焦點(diǎn)為、,且,弦AB過點(diǎn),則△的周長為()(A)10(B)20(C)2(D)2橢圓上的點(diǎn)P到它的左準(zhǔn)線的距離是10,那么點(diǎn)P到它的右焦點(diǎn)的距離是()(A)15(B)12(C)10(D)83橢圓的焦點(diǎn)、,P為橢圓上的一點(diǎn),已知,則△的面積為()(A)9(B)12(C
2025-06-20 08:50
【總結(jié)】第2講橢圓、雙曲線、拋物線、標(biāo)準(zhǔn)方程與幾何性質(zhì)名稱橢圓雙曲線拋物線定義|PF1|+|PF2|=2a(2a|F1F2|)|PF|=點(diǎn)F不
2025-05-01 02:17
【總結(jié)】雙曲線知識(shí)點(diǎn)一、雙曲線的定義:1.第一定義:到兩個(gè)定點(diǎn)F1與F2的距離之差的絕對值等于定長(<|F1F2|)的點(diǎn)的軌跡((為常數(shù)))這兩個(gè)定點(diǎn)叫雙曲線的焦點(diǎn).要注意兩點(diǎn):(1)距離之差的絕對值.(2)2a<|F1F2|.當(dāng)|MF1|-
2025-07-25 00:12