【總結(jié)】不等式的證明復(fù)習(xí)?不等式證明的常用方法:?比較法、綜合法、分析法反證法先假設(shè)要證明的命題不成立,以此為出發(fā)點,結(jié)合已知條件,應(yīng)用公理、定義、定理、性質(zhì)等,進行正確的推理,得到矛盾,說明假設(shè)不正確,從而間接說明原命題成立的方法。1.xy02.1x12.yxy
2025-08-01 17:41
【總結(jié)】Forpersonaluseonlyinstudyandresearch;notformercialuse幾種常見的放縮法證明不等式的方法一、放縮后轉(zhuǎn)化為等比數(shù)列。例1.滿足:(1)用數(shù)學(xué)歸納法證明:(2),求證:解:(1)略(2)又,迭乘得:點評:把握“”這一特征對“”進行變形,
2025-07-24 05:50
【總結(jié)】第六章不等式第二節(jié)不等式放縮技巧十法證明不等式,其基本方法參閱(下冊):不等式的放縮技巧。證明數(shù)列型不等式,因其思維跨度大、構(gòu)造性強,需要有較高的放縮技巧而充滿思考性和挑戰(zhàn)性,能全面而綜合地考查學(xué)生的潛能與后繼學(xué)習(xí)能力,因而成為高考壓軸題及各級各類競賽試題命題的極好素材。這類問題的求解策略往往是:通過多角度觀察所給
2025-06-24 19:24
【總結(jié)】第一篇:2012高考專題----數(shù)列與不等式放縮法 高考專題——放縮法 一、基本方法 1.“添舍”放縮 通過對不等式的一邊進行添項或減項以達到解題目的,這是常規(guī)思路。,b為不相等的兩正數(shù),且a...
2024-10-28 23:29
【總結(jié)】第一篇:高一不等式解法及放縮法證明練習(xí) 不等式 1.設(shè)a,b,c,d是任意正數(shù),求證:1 2.已知x,y,z 3.求證:-1)1+ 4.已知a,b,c?R,求證:a+b+c3ab+bc+...
2024-10-28 09:51
【總結(jié)】第一篇:淺談用放縮法證明不等式 淺談用放縮法證明不等式 山東省許曄 不等式的證明是中學(xué)數(shù)學(xué)教學(xué)的重點,也是學(xué)生接受時感到頭痛的難點。不等式的證明方法很多。如:比較法(比差商法)、分析法、綜合法、...
2024-10-28 04:08
【總結(jié)】完美WORD格式資料1、不等式1.(2009年瀘州)關(guān)于x的方程的解為正實數(shù),則k的取值范圍是2、(2009年長沙)已知關(guān)于的不等式組只有四個整數(shù)解,則實數(shù)的取值范圍是.3、(2009年莆田)一罐飲料凈重
2025-03-26 23:00
【總結(jié)】存檔編號贛南師范學(xué)院學(xué)士學(xué)位論文放縮法在不等式證明中的應(yīng)用教學(xué)學(xué)院數(shù)學(xué)與計算機科學(xué)學(xué)院屆別2022屆專
2025-01-06 06:15
【總結(jié)】第一篇:構(gòu)造法與放縮法在不等式證明中的運用 構(gòu)造法與放縮法在不等式證明中的運用 例1:設(shè)函數(shù)f(x)=x-(x+1)ln(x+1)(x-1).(1)求f(x)的單調(diào)區(qū)間; (2)證明:當(dāng)nm...
2024-10-28 03:31
【總結(jié)】放縮法的常見技巧(1)舍掉(或加進)一些項(2)在分式中放大或縮小分子或分母。(3)應(yīng)用基本不等式放縮(例如均值不等式)。(4)應(yīng)用函數(shù)的單調(diào)性進行放縮(5)根據(jù)題目條件進行放縮。(6)構(gòu)造等比數(shù)列進行放縮。(7)構(gòu)造裂項條件進行放縮。(8)利用函數(shù)切線、割線逼近進行放縮。使用放縮法的注意事項(1)放縮的方向要一致。(2)放與縮要適度。(3)很多時候只對數(shù)列
2025-06-26 16:31
【總結(jié)】第一篇:淺談用放縮法證明不等式的方法與技巧 淺談用放縮法證明不等式的方法與技巧 分類:學(xué)法指導(dǎo) 放縮法:為放寬或縮小不等式的范圍的方法。常用在多項式中“舍掉一些正(負)項”而使不等式各項之和變小...
2024-10-28 06:44
【總結(jié)】數(shù)列不等式證明的幾種方法數(shù)列和不等式都是高中數(shù)學(xué)重要內(nèi)容,這兩個重點知識的聯(lián)袂、交匯融合,更能考查學(xué)生對知識的綜合理解與運用的能力。這類交匯題充分體現(xiàn)了“以能力立意”的高考命題指導(dǎo)思想和“在知識網(wǎng)絡(luò)交匯處”設(shè)計試題的命題原則。下面就介紹數(shù)列不等式證明的幾種方法,供復(fù)習(xí)參考。一、巧妙構(gòu)造,利用數(shù)列的單調(diào)性例1.對任意自然數(shù)n,求證:。證明:構(gòu)造數(shù)列。所以,即為單調(diào)遞增數(shù)列
2025-07-23 16:02
【總結(jié)】第一篇:構(gòu)造函數(shù)證明數(shù)列不等式 構(gòu)造函數(shù)證明數(shù)列不等式ln2ln3ln4ln3n5n+6+++L+n3n-(n?N*).:23436 :(1)a32,a+a+L+(n32)a2(n+1)23n...
2024-10-31 14:50
【總結(jié)】第一篇:放縮法、反證法證明不等式10 放縮法、反證法證明不等式 教學(xué)目標(biāo): 掌握放縮法和反證法證明不等式教學(xué)難點: 放縮法和反證法教學(xué)過程: 一、簡要回顧已經(jīng)學(xué)習(xí)過的幾種不等式證明的方法 ...
2024-10-27 23:14
【總結(jié)】第一篇:利用導(dǎo)數(shù)證明不等式 利用導(dǎo)數(shù)證明不等式 例1.已知x0,求證:xln(1+x)分析:設(shè)f(x)=x-lnx。x?[0,+¥)??紤]到f(0)=0,要證不等式變?yōu)椋簒0時,f(x)f...
2024-10-27 18:46