freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

高三數(shù)學(xué)命題展望和復(fù)習(xí)建議(已改無錯(cuò)字)

2022-12-24 08:49:47 本頁面
  

【正文】 果,信息的含金量之高并不亞于高考真 題。 高考經(jīng)驗(yàn)告訴我們,高考知識(shí)要求中的 “ 了解 ” 、 “ 理解 ” 和 “ 掌握 ” 三個(gè)層次,往往跟 “ 不一定考 ” 、 “ 有可能考 ” 、 “ 要考的可能性很大 ” 有些相匹配。 現(xiàn)以 “ 圓錐曲線與方程 ” 為例加以解讀 (理科 ): 了 解 理 解 掌 握 了解圓錐曲線的實(shí)際背景,了解圓錐曲線在刻畫現(xiàn)實(shí)世界和解決實(shí)際問題中的作用。 理解數(shù)形結(jié)合的思想 . 掌握橢圓、拋物線的定義、幾何圖形、標(biāo)準(zhǔn)方程及簡單性質(zhì)。 了解雙曲線的定義、幾何圖形和標(biāo)準(zhǔn)方程,知道它的簡單幾何性質(zhì)。 能用坐標(biāo)法解決簡單的直線與橢圓、拋物線的位置關(guān)系等問題。 了解方程的曲線與曲線的方程的對(duì)應(yīng)關(guān)系。了解圓錐曲線的簡單應(yīng)用。 現(xiàn)以 “ 圓錐曲線與方程 ” 為例加以解讀 (文科 ): 了 解 理 解 掌 握 了解圓錐曲線的實(shí)際背景,了解圓錐曲線在刻畫現(xiàn)實(shí)世界和解決實(shí)際問題中的作用。 理解數(shù)形結(jié)合的思想。 掌握橢圓、拋物線的定義、幾何圖形、標(biāo)準(zhǔn)方程及簡單性質(zhì)。 了解雙曲線的定義、幾何圖形和標(biāo)準(zhǔn)方程,知道它的簡單幾何性質(zhì)。 能用坐標(biāo)法解決簡單的直線與拋物線的位置關(guān)系等問題 。 了解圓錐曲線的簡單應(yīng)用。 從上表我們可以獲取以下信息: ( 1)三種圓錐曲線的地位均衡性已經(jīng)被打破,雙曲線的地位明顯下降,以它作為載體的解析幾何大題的可能性已減少; ( 2)解析幾何大題的最大可能素材 :理科用坐標(biāo)法解決直線與橢圓、拋物線的位置關(guān)系等問題;文科用坐標(biāo)法解決直線與拋物線的位置關(guān)系等問題 . ( 3) 雙曲線的定義、幾何圖形和標(biāo)準(zhǔn)方程以及簡單幾何性質(zhì),方程的曲線與曲線的方程的對(duì)應(yīng)關(guān)系等可能會(huì)在小題中加以考查; ( 4) 把 “ 了解圓錐曲線的簡單應(yīng)用和理解數(shù)形結(jié)合的思想 ” 聯(lián)系起來看,我們并不能排除應(yīng)用性小題會(huì)設(shè)置在這里。 高考第一輪復(fù)習(xí)應(yīng)該努力達(dá)到 “ 知識(shí)考點(diǎn)到位,思想方法理清,解題技能跨躍 ” 的教學(xué)目標(biāo),它不僅要關(guān)注高考的熱點(diǎn)、重點(diǎn),而且更要重視高考的冷點(diǎn)、疑點(diǎn)。如果過早地定框框、畫圈圈,那可能會(huì)事與愿違,因?yàn)橛行┲R(shí)考點(diǎn)的要求層次是很難明晰的,甚至有的可能還是動(dòng)態(tài)的。 高考第一輪復(fù)習(xí)可在尊重 “ 考試要求 ” 的基礎(chǔ)上,以 “ 教學(xué)要求 ” 為要求進(jìn)行復(fù)習(xí)教學(xué);高考第二輪復(fù)習(xí)則可根據(jù)學(xué)生的實(shí)際掌握情況,以 “ 考試要求 ” 為要求進(jìn)行復(fù)習(xí)教學(xué)。 設(shè) AB、 AD與橢圓的公共點(diǎn)分別為 P、 Q, PQ交 x軸于 F點(diǎn) . ⑴ 求橢圓方程 。 ⑵ 過 A點(diǎn)作任一直線交橢 圓于 M、 N兩點(diǎn),求證: PQ平分 ∠ MFN. 無獨(dú)有偶, 2020年參 考卷中的解析幾何題所考 查的知識(shí)要求與它竟驚人 的吻合,真 是“似曾相識(shí) 燕歸來”! O 2020年理科樣卷第 16題是: 如圖, ABCD為菱形,且 |AC|=4, |BD|=2,橢圓與 菱形四邊都有一個(gè)公共點(diǎn),長軸在 AC上,且離心率為 . 《 浙江省高考數(shù)學(xué)樣卷 》 講評(píng)課兩個(gè)例子的教學(xué)片斷 問題 1 已知三角形的三頂點(diǎn)為 A( 0, 0), B( 10, 0), C( 2, 4), P為△ ABC三邊圍成的區(qū)域(含邊界)內(nèi)一 點(diǎn),則 P到三角形三邊距離和的最大值為( ) 學(xué)生 1 設(shè)點(diǎn) P的坐標(biāo)為( x,y),則點(diǎn) p到三角形三邊距離和 u= 再求 u的最大值。 實(shí) ——列好知識(shí)清單, 鞏固核心方法, 重視交匯綜合 知識(shí)清單: 數(shù)列的通項(xiàng)、通項(xiàng)的分段形式、數(shù)列是特殊的函 數(shù)、遞增(減)數(shù)列、數(shù)列的最大(?。╉?xiàng)、等差數(shù) 列的判定、等差中項(xiàng)、等差數(shù)列的通項(xiàng)公式、遞增 (減)的等差數(shù)列用鄰項(xiàng)變號(hào)法求 的最小(大)值、 等差數(shù)列的性質(zhì)、等差數(shù)列的前 n項(xiàng)和公式、等比數(shù) 列的判定、等比中項(xiàng)、等比數(shù)列的通項(xiàng)公式、等比數(shù) 列的性質(zhì)、等比數(shù)列的前 n項(xiàng)和公式、 “ 知三求二 ” 、三 數(shù)或四數(shù)成等差(比)的設(shè)法、根據(jù)遞推公式寫出數(shù) 列的前幾項(xiàng)、由遞推公式求通項(xiàng)公式、已知 求 、 數(shù)列求和等; 以 “ 數(shù)列 ” 一章為例分別列出兩份清單 方法清單: 求數(shù)列的通項(xiàng)的方法有觀察法、歸納猜想證明、 已知 求 、累加法、累積法、迭代法等;數(shù)列求 和的方法有直接運(yùn)用等差(比)數(shù)列求和公式、拆 項(xiàng)裂項(xiàng)法、錯(cuò)位相減法、通項(xiàng)求和法、分組求和法、 倒序相加法等。 掌握和鞏固解決問題的核心方法 (以“數(shù)列”一章為例 ) 從映射、函數(shù)的觀點(diǎn)看,數(shù)列是一種特殊函數(shù)。 運(yùn)用這個(gè)基本知識(shí)就比較容易理解和掌握數(shù)列的通項(xiàng)、 通項(xiàng)的分段形式、遞增(減)數(shù)列、數(shù)列的最大(小) 項(xiàng)以及遞增(減)的等差數(shù)列用鄰項(xiàng)變號(hào)法求 的 最?。ù螅┲档葐栴}。通過等差(比)數(shù)列通項(xiàng)公式 和前 n項(xiàng)和公式就可以 “ 知三求二 ” ,那無非是方程思想的最直接和最基本的運(yùn)用。實(shí)際上, “ 通過方程求解 ” 是本章的核心方法,諸如通項(xiàng)的分段形式、根據(jù)遞推公式寫出數(shù)列的前幾項(xiàng)、由遞推公式求通項(xiàng)公式、已知 求 、錯(cuò)位相減法、倒序相加法等都是核心 方法在解題中的生動(dòng)體現(xiàn)。 開門見山,直接給出問題 1 直線 l與拋物線 相交于 A、 B兩點(diǎn),求證: “ 如果直線 l過點(diǎn) T(3,0),那么 ” 是真命題。 讓學(xué)生獨(dú)立思考、自行完成,請(qǐng)一位同學(xué)板書解題 過程(照抄于下): 這
點(diǎn)擊復(fù)制文檔內(nèi)容
教學(xué)課件相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖片鄂ICP備17016276號(hào)-1