【總結(jié)】江蘇省射陽縣盤灣中學(xué)高中數(shù)學(xué)立體幾何復(fù)習(xí)(第3課時)教案蘇教版必修2復(fù)習(xí)目標:理解并掌握直線與平面垂直的判定定理及性質(zhì)定理、平面與平面垂直的判定定理及性質(zhì)定理。能抓住線線垂直、線面垂直、面面垂直之間的轉(zhuǎn)化關(guān)系解決有關(guān)垂直問題;會求簡單的二面角的平面角問題。注重滲透化歸與轉(zhuǎn)化的數(shù)學(xué)思想一、基礎(chǔ)訓(xùn)練:1、若直線a與平面?不垂直,那么在平面
2024-11-19 23:14
【總結(jié)】高中數(shù)學(xué)立體幾何知識點歸納總結(jié)一、立體幾何知識點歸納第一章空間幾何體(一)空間幾何體的結(jié)構(gòu)特征(1)多面體——由若干個平面多邊形圍成的幾何體.圍成多面體的各個多邊形叫叫做多面體的面,相鄰兩個面的公共邊叫做多面體的棱,棱與棱的公共點叫做頂點。旋轉(zhuǎn)體——把一個平面圖形繞它所在平面內(nèi)的一條定直線旋轉(zhuǎn)形成的封閉幾何體。其中,這條定直線稱為旋轉(zhuǎn)體的軸。
2025-04-04 05:14
【總結(jié)】高中課程復(fù)習(xí)專題1高中課程復(fù)習(xí)專題——數(shù)學(xué)立體幾何一空間幾何體㈠空間幾何體的類型1多面體:由若干個平面多邊形圍成的幾何體。圍成多面體的各個多邊形叫做多面體的面,相鄰兩個面的公共邊叫做多面體的棱,棱與棱的公共點叫做多面體的頂點。2旋轉(zhuǎn)體:把一個平面圖形繞它所在的平面內(nèi)的一條定直線旋轉(zhuǎn)形成了封閉幾何體。其中,這條直線稱為旋轉(zhuǎn)
2024-12-17 02:36
【總結(jié)】立體幾何??甲C明題1、已知四邊形是空間四邊形,分別是邊的中點(1)求證:EFGH是平行四邊形(2)若BD=,AC=2,EG=2。求異面直線AC、BD所成的角和EG、BD所成的角。AHGFEDCB2、如圖,已知空間四邊形中,,是的中點。求證:(1)平面CDE;AEDBC(2)平面平面。
2025-04-04 05:15
【總結(jié)】《三視圖》,如左圖所示,則該三棱錐的外接球的表面積為AB主視圖C左視圖俯視圖342俯視圖主視圖左視圖,其中,主視圖中△ABC是邊長為2的正三角形,俯視圖為正六邊形,那么該幾何體的體積為22主視圖24左視圖俯視圖(第3圖),根據(jù)圖中標出的尺寸
【總結(jié)】上海立體幾何高考試題匯總(01春)若有平面與,且,則下列命題中的假命題為()(A)過點且垂直于的直線平行于.(B)過點且垂直于的平面垂直于.(C)過點且垂直于的直線在內(nèi).(D)過點且垂直于的直線在內(nèi).(01)已知a、b為兩條不同的直線,α、β為兩個不同的平面,且a⊥α,b⊥β,則下列命題中的假命題是(?
【總結(jié)】2009-2010學(xué)年高三立幾建系設(shè)點專題引入空間向量坐標運算,使解立體幾何問題避免了傳統(tǒng)方法進行繁瑣的空間分析,只需建立空間直角坐標系進行向量運算,而如何建立恰當(dāng)?shù)淖鴺讼担蔀橛孟蛄拷忸}的關(guān)鍵步驟之一.所謂“建立適當(dāng)?shù)淖鴺讼怠?,一般?yīng)使盡量多的點在數(shù)軸上或便于計算。一、建立空間直角坐標系的三條途徑途徑一、利用圖形中的對稱關(guān)系建立坐標系:圖形中雖沒有明顯交于一點的三條直線,但
【總結(jié)】二面角的求法一、定義法:從一條直線出發(fā)的兩個半平面所組成的圖形叫做二面角,這條直線叫做二面角的棱,這兩個半平面叫做二面角的面,在棱上取點,分別在兩面內(nèi)引兩條射線與棱垂直,這兩條垂線所成的角的大小就是二面角的平面角。本定義為解題提供了添輔助線的一種規(guī)律。如例1中從二面角S—AM—B中半平面ABM上的一已知點(B)向棱AM作垂線,得垂足(F);在另一半平面ASM內(nèi)過該垂
2025-04-04 05:09
【總結(jié)】立體幾何知識點整理一.直線和平面的三種位置關(guān)系:1.線面平行 2.線面相交 3.線在面內(nèi)二.平行關(guān)系:1.線線平行:方法一:用線面平行實現(xiàn)。方法二:用面面平行實現(xiàn)。方法三:用線面垂直實現(xiàn)。若,則。方法四:用向量方法:若向量和向量共線且l、m不重合,則。2.線面平行:方法一:
2025-04-04 05:05
【總結(jié)】新課標立體幾何解析幾何??碱}匯總1、已知四邊形是空間四邊形,分別是邊的中點(1)求證:EFGH是平行四邊形AHGFEDCB(2)若BD=,AC=2,EG=2。求異面直線AC、BD所成的角和EG、BD所成的角。證明:在中,∵分別是的中點∴同理,∴∴四邊形是平行四邊形。(2)90°30°
2024-08-01 11:22
【總結(jié)】高中數(shù)學(xué)《立體幾何》大題及答案解析(理)1.(2009全國卷Ⅰ)如圖,四棱錐中,底面為矩形,底面,,,點在側(cè)棱上,。(I)證明:是側(cè)棱的中點;求二面角的大小。2.(2009全國卷Ⅱ)如圖,直三棱柱ABC-A1B1C1中,AB⊥AC,D、E分別為AA1、B1C的中點,DE⊥平面BCC1(Ⅰ)證明:AB=AC(Ⅱ)設(shè)二
2025-06-18 13:50
【總結(jié)】第1章立體幾何初步(A)(時間:120分鐘滿分:160分)一、填空題(本大題共14小題,每小題5分,共70分)1.將一個等腰梯形繞它的較長的底邊所在的直線旋轉(zhuǎn)一周,所得的幾何體包括________________.2.一個三角形在其直觀圖中對應(yīng)一個邊長為1的正三角形,原三角形的面積為________.
2024-12-05 00:28
【總結(jié)】第1章立體幾何初步(B)(時間:120分鐘滿分:160分)一、填空題(本大題共14小題,每小題5分,共70分)1.等邊三角形的邊長為a,它繞其一邊所在的直線旋轉(zhuǎn)一周,則所得旋轉(zhuǎn)體的體積為________.2.若棱長為3的正方體的頂點都在同一球面上,則該球的表面積為________.3.如圖,是一個正方體的展
【總結(jié)】 高中數(shù)學(xué)立體幾何部分錯題精選一、選擇題:1.(石莊中學(xué))設(shè)ABCD是空間四邊形,E,F(xiàn)分別是AB,CD的中點,則滿足()A共線B共面C不共面D可作為空間基向量正確答案:B錯因:學(xué)生把向量看為直線。2.(石莊中學(xué))在正方體ABCD-ABCD,O是底面ABCD的中心,M、N分別是棱DD、DC的中點,則直線OM(
2025-01-14 09:02
【總結(jié)】立體幾何常考證明題匯總考點1:證平行(利用三角形中位線),異面直線所成的角已知四邊形是空間四邊形,分別是邊的中點(1)求證:EFGH是平行四邊形AHGFEDCB(2)若BD=,AC=2,EG=2。求異面直線AC、BD所成的角和EG、BD所成的角??键c2:線面垂直,面面垂直的判定如圖,已知空間四邊形中,,是的中點。