【摘要】第一篇:立體幾何證明 1、(14分)如圖,在正方體ABCD-A1B1C1D1中,E、F為棱AD、AB的中點.(1)求證:EF∥平面CB1D1; (2)求證:平面CAA1C1⊥平面CB1D1. A...
2024-11-12 12:11
【摘要】一輪復(fù)習(xí)之立體幾何姓名一輪復(fù)習(xí)之立體幾何姓名1.已知三棱錐中,為等腰直角三角形,,設(shè)點為中點,點為中點,點為上一點,且.(1)證明:平面;(2)若,求直線與平面所成角的正弦值.
2024-08-12 12:16
【摘要】高三數(shù)學(xué)專項訓(xùn)練:立體幾何解答題(文科)(一)1.(本題滿分12分)如圖,三棱錐A—BPC中,AP⊥PC,AC⊥BC,M為AB中點,D為PB中點,且△PMB為正三角形.(Ⅰ)求證:DM//平面APC;(Ⅱ)求證:平面ABC⊥平面APC;(Ⅲ)若BC=4,AB=20,求三棱錐D—BCM的體積.2.如圖1,在四棱錐中,底面
2025-04-19 05:02
【摘要】立體幾何大題的答題規(guī)范與技巧一、對于空間中的定理與判定,除公理外都要明確寫出條件,才有結(jié)論。需要多個條件時,要逐個寫出。對于平面幾何中的結(jié)論,要求寫出完整的條件,可以省略部分證明過程。二、一般地,有多個小題時,前幾小題應(yīng)該用幾何法,可以節(jié)省時間。最后一小題若幾何法較復(fù)雜,可以用坐標法。三、建坐標系的要求:使更多的點在坐標軸上,坐標系最好在幾何體的內(nèi)部。四、采用
2025-04-24 05:51
【摘要】第一篇:文科立體幾何證明 立體幾何證明題常見題型 1、如圖,在四棱錐P-ABCD中,底面ABCD是正方形,側(cè)棱PD^底面ABCD,PD=DC=1,E是PC的中 點,作EF^PB交PB于點F. ...
2024-10-26 17:25
【摘要】第一篇:高中立體幾何 高中立體幾何的學(xué)習(xí) 高中立體幾何的學(xué)習(xí)主要在于培養(yǎng)空間抽象能力的基礎(chǔ)上,發(fā)展學(xué)生的邏輯思維能力和空間想象能力。立體幾何是中學(xué)數(shù)學(xué)的一個難點,學(xué)生普遍反映“幾何比代數(shù)難學(xué)”。但...
2024-11-15 06:58
【摘要】第一篇:立體幾何證明問題 證明問題 ,E、F分別是長方體邊形 .-的棱A、C的中點,求證:四邊形是平行四 ,ABCD為正方形,SA⊥平面ABCD,過點A且垂直于SC的平面分別交SB、SC、SD...
2024-10-14 10:12
【摘要】第一篇:立體幾何教材分析 《數(shù)學(xué)必修模塊2》立體幾何教材分析 長沙市二十六中 為了更好地組織實施好本模塊的教學(xué),我們高一年級數(shù)學(xué)備課組成員以問題為載體,主要對如下課題進行了研究:(1)課標中所提...
2024-11-15 06:00
【摘要】立體幾何之外接球秒殺第一種長方體正方體模型長方體各頂點可在一個球面上,長為abc,,,其體對角線為l.當(dāng)球為長方體的外接球時,截面圖為長方體的對角面和其外接圓,故球的半徑例1(1)已知各頂點都在同一球面上的正四棱柱的高為4,體積為16,則這個球的表面積是()A.16pB.20pC.24
2024-08-12 12:09
【摘要】課時目標:1、了解空間動點集合的類型2、探索“動點問題”的解題思路問題一:動點P滿足如下條件時圓橢圓雙曲線拋物線直線球面平面內(nèi)到定點距離等于定長平面內(nèi)到兩定點距離之和為定值(大于定點間的距離)平面內(nèi)到兩定點距離之差的絕對值為定值(小于定點間的距離)
2024-08-24 10:16
【摘要】立體幾何復(fù)習(xí)講義【基礎(chǔ)回扣】1.平面平面的基本性質(zhì):掌握三個公理及推論,會說明共點、共線、共面問題。(1)證明點共線的問題,一般轉(zhuǎn)化為證明這些點是某兩個平面的公共點(依據(jù):由點在線上,線在面內(nèi),推出點在面內(nèi)),這樣可根據(jù)公理2證明這些點都在這兩個平面的公共直線上。(2)證明共點問題,一般是先證
2025-06-22 21:19
【摘要】一、基本概念1.空間向量:在空間內(nèi),我們把具有大小和方向的量叫做向量,用有向線段表示.2.向量的模:向量的大小叫向量的長度或模.記為|,特別地:?①規(guī)定長度為0的向量為零向量,記作;?②模為1的向量叫做單位向量;3.相等的向量:兩個模相等且方向相同的向量稱為相等的向量.4.負向量:兩個模相等且方向相反的向量是互為負向量.如的相反向量記為-.
2025-05-02 08:18
【摘要】專題四立體幾何/1/.ABCDABEFABMACNFBAMFNMNBCE???兩個全等的正方形和所在平面相交于,,,且,求證:平面例()//()()//?解決本題的關(guān)鍵在于找出平面內(nèi)的一條直線
2025-08-02 00:17
【摘要】1.[2007年普通高等學(xué)校統(tǒng)一考試(海南、寧夏卷)數(shù)學(xué)文科第8題,理科第8題]20 20 正視圖20 側(cè)視圖101020 俯視圖已知某個幾何體的三視圖如下,根據(jù)圖中標出的尺寸(單位:cm),可得這個幾何體的體積是( ?。粒? B.C. D.2.[2008年普通高等學(xué)校招生全國統(tǒng)一考試(山東
2025-06-22 22:04
【摘要】平面的基本性質(zhì)公理1:如果一條直線上的兩點在一個平面內(nèi),那么這條直線在此平面內(nèi)(教師引導(dǎo)學(xué)生閱讀教材P42前幾行相關(guān)內(nèi)容,并加以解析)符號表示為LA·αA∈LB∈L=LαA∈αB∈α公理1作用:判斷直線是否在平面內(nèi)生活中,我們看到三腳架可以牢固地支撐照相機或測量用的平板儀等等……C·
2025-05-02 00:53