freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內容

三角函數(shù)教案:6課時學案-任意角的三角函數(shù)2-閱讀頁

2024-10-25 14:40本頁面
  

【正文】 生對“三角函數(shù)可以看成是以實數(shù)為自變量的函數(shù)”的理解有半信半疑之感,有待通過后續(xù)的應用加深理解.(四)探索定義域(情景6)(1)函數(shù)概念的三要素是什么?函數(shù)三要素:對應法則、定義域、值域.正弦函數(shù)sinα的對應法則是什么?正弦函數(shù)sinα的對應法則,實質上就是sinα的定義:對α的每一個確定的值,有唯一確定的比值y/r與之對應,即α→y/r=sinα.(2)布置任務情景:什么是三角函數(shù)的定義域?請求出六個三角函數(shù)的定義域,填寫下表:三角函數(shù)sinαcosαtanαcotαcscαsecα定義域引導學生自主探索:如果沒有特別說明,那么使解析式有意義的自變量的取值范圍叫做函數(shù)的定義域,三角函數(shù)的定義域自然是指:使比值有意義的角α的取值范圍.關于sinα=y/r、cosα=x/r,對于任意角α(弧度數(shù)),r>0,y/r、x/r恒有意義,定義域都是實數(shù)集R.對于tanα=y/x,α=kππ/2時x=0,y/x無意義,tanα的定義域是:{α|α∈R,且α≠kππ/2}..........教師指出:sinα、cosα、tanα的定義域必須緊扣三角函數(shù)定義在理解的基礎上記熟,cotα、cscα、secα的定義域不要求記憶.(關于值域,到后面再學習).設計意圖:定義域是函數(shù)三要素之一,有利于在理解的基礎上記住它、應用它,也增進對三角函數(shù)概念的掌握.(五)符號判斷、形象識記(情景7)能判斷三角函數(shù)值的正、負嗎?試試看!引導學生緊緊抓住三角函數(shù)定義來分析,r>0,三角函數(shù)值的符號決定于x、y值的正負,根據(jù)終邊所在位置總結出形象的識記口訣:(同好得正、異號得負)sinα=y/r:上正下負橫為0cosα=x/r:左負右正縱為0tanα=y/x:交叉正負設計意圖:判斷三角函數(shù)值的正負符號,是本章教材的一項重要的知識、數(shù)形結合判斷和記憶三角函數(shù)值的正負符號,并總結出形象的識記口訣,這也是理解和記憶的關鍵.(六)練習鞏固、理解記憶自學例1:已知角α的終邊經(jīng)過點P(2,3),求α的六個三角函數(shù)值.要求:讀完題目,思考:計算什么?需要準備什么?閉目心算,對照解答,模仿書面表達格式,鞏固定義.課堂練習:p19題1:已知角α的終邊經(jīng)過點P(3,1),求α的六個三角函數(shù)值.要求心算,并提問中下學生檢驗,點評:角α終邊上有無窮多個點,根據(jù)三角函數(shù)的定義,只要知道α終邊上任意一個點的坐標,就可以計算這個角的三角函數(shù)值(或判斷其無意義).補充例題:已知角α的終邊經(jīng)過點P(x,3),cosα=4/5,求α的其它五個三角函數(shù)值.師生探索:已知y=3,要求其它五個三角函數(shù)值,須知r=?,x=?.根據(jù)定義得=(方程思想),x>0,解得x=4,.自學例2:求下列各角的六個三角函數(shù)值:(1)0;(2)π/2;(3)3π/2.提問,據(jù)反饋信息作點評、修正.師生探索:緊扣三角函數(shù)定義求解,首先要在終邊上取定一點。取特殊點能使計算更簡明。90176。270176。角α(弧度)sinαcosαtanα處理:要求取點用定義求解,針對計算過程提問、點評,理解鞏固定義.強調:終邊在坐標軸上的角叫軸線角,如0、π/π、3π/2等,今后經(jīng)常用到軸線角的三角函數(shù)值,要結合三角函數(shù)定義記熟這些值.設計意圖:及時安排自學例題、自做教材練習題,一般性與特殊性相結合,進行適量的變式練習,以鞏固和加深對三角函數(shù)概念的理解,通過課堂積極主動的練習活動進行思維訓練,把“培養(yǎng)學生分析解決問題的能力”貫穿在每一節(jié)課的課堂教學始終.(七)回顧小結、建構網(wǎng)絡要求全體學生根據(jù)教師所提問題進行總結識記,提問檢查并強調:1.你是怎樣把銳角三角函數(shù)定義推廣到任意角的?或者說任意角三角函數(shù)具體是怎樣定義的?(建立直角坐標系,使角的頂點與坐標原點重合,,在終邊上任意取定一點P,)2.你如何判斷和記憶正弦、余弦、正切函數(shù)的定義域?(根據(jù)定義,)3.你如何記憶正弦、余弦、正切函數(shù)值的符號?(根據(jù)定義,想象坐標位置,)設計意圖:遺忘的規(guī)律是先快后慢,回顧再現(xiàn)是記憶的重要途徑,抓住要害,人人參與,及時建構知識網(wǎng)絡,優(yōu)化知識結構,培養(yǎng)認知能力.(八)布置課外作業(yè)1.書面作業(yè):、5題.2.認真閱讀p22“閱讀材料:三角函數(shù)與歐拉”,了解歐拉的生平和貢獻,特別學習他對科學的摯著精神和堅忍不拔的頑強毅力!有興趣的同學可以上網(wǎng)查閱歐拉的相關情況.教學設計說明一、對本節(jié)教材的理解三角函數(shù)是描述周期運動現(xiàn)象的重要的數(shù)學模型,有非常廣泛的應用.星星之火,可以燎原.直角三角形簡單樸素的邊角關系,以直角坐標系為工具進行自然地推廣而得到簡明的任意角的三角函數(shù)定義,緊緊扣住三角函數(shù)定義這個寶貴的源泉,自然地導出三角函數(shù)線、定義域、符號判斷、值域、同角三角函數(shù)關系、多組誘導公式、多組變換公式、輔助角公式、圖象和性質,(如直線斜率公式、極坐標、部分曲線的參數(shù)方程等),定義還是直接解決某些問題的工具,三角函數(shù)知識是物理學、高等數(shù)學、測量學、天文學的重要基礎.三角函數(shù)定義必然是學好全章內容的關鍵,如果學生掌握不好,將直接影響到后續(xù)內容的學習,由三角函數(shù)定義的基礎性和應用的廣泛性決定了本節(jié)教材的重點就是定義本身.二、教學法加工數(shù)學教材通常用抽象概括的形式化的數(shù)學書面語言闡述其知識和方法,教師只有通過教學法加工,始終貫徹“以學生的發(fā)展為本”的科學教育觀,“將數(shù)學的學術形態(tài)轉化為教育形態(tài)”(張奠宙語),引導學生積極主動地進行思考活動,直接參與體驗數(shù)學知識產(chǎn)生發(fā)展的背景、過程,返璞歸真,揭示本質,體會其中的思想和方法,學生只有這樣才能真正理解掌握數(shù)學知識和方法,有效地發(fā)展智力、培養(yǎng)能力.在本節(jié)教材中,三角函數(shù)定義是重點,三角函數(shù)線是難點,為了較好地突出重點和突破難點,分散重點和難點,同時兼顧例題、課堂練習的協(xié)調匹配,將不按教材順序來進行教學,第一課時安排三角函數(shù)的定義(突出重點)、定義域、符號判斷、例題2及p19課堂練習3,第二課時安排三角函數(shù)線、p15練習(突破難點)、誘導公式一及課本例題.教學經(jīng)驗表明,三角函數(shù)定義“簡單易記”,學生很容易輕視它,不少學生機械記憶、“教師主導、學生主體”的原則,采用“啟發(fā)探索、講練結合”的常規(guī)教學方法,在學生的最近發(fā)展區(qū)圍繞學生的學習目標設計了一系列符合學生認知規(guī)律的程序,通過多媒體輔助教學動畫演示比值與角之間的依賴關系,拓展思維活動時空,力求使學生全員主動參與,積極思考,體會定義產(chǎn)生、發(fā)展的過程,通過思維過程來理解知識、培養(yǎng)能力.將六個比值放在一起來研究,同時給出六個三角函數(shù)的定義,能夠增強對比感和整體感,至于大綱對兩組函數(shù)掌握與了解的不同要求,在下一步的教學中注意區(qū)分就行了.教學中關于符號sinα、cosα、tanα的出場安排,教材首先對比值取名并給出英文記法,再研究它們與α的函數(shù)關系;另外可以先研究六個比值與α之間的函數(shù)關系,.三、教學過程分析(見穿插在教案中的設計意圖).《任意角三角函數(shù)》說課稿5各位領導,各位老師:我說課的課題是《任意角的三角函數(shù)》,內容取自人教版普通高中課程標準實驗教科書《數(shù)學》④(必修)第1。1節(jié)。三角函數(shù)的定義是在初中對銳角三角函數(shù)的定義以及剛學過的“角的概念的推廣”的基礎上討論和研究的。緊緊扣住三角函數(shù)定義這個寶貴的源泉,可以自然地導出本章的具體內容:三角函數(shù)線、定義域、符號判斷、值域、同角三角函數(shù)關系、多組誘導公式、多組變換公式、圖象和性質。三角函數(shù)知識還是物理學、高等數(shù)學、測量學、天文學的重要基礎。數(shù)學思想方法分析:作為一名數(shù)學老師,不僅要傳授給學生數(shù)學知識,更重要的是傳授給學生數(shù)學思想、數(shù)學意識,因此本節(jié)課在教學中力圖向學生展示嘗試類比、數(shù)形結合等數(shù)學思想方法。教學難點:任意角的三角函數(shù)概念的建構過程。三、學情分析學生已經(jīng)掌握的內容及學生學習能力1。2。3。4。四、教學目標根據(jù)上述教材結構與內容分析,考慮到學生已有的認知結構心理特征 ,我制定如下教學目標:1。能力訓練目標:通過學生積極參與知識的“發(fā)現(xiàn)”與“形成”的過程,培養(yǎng)合情猜測的能力。情感目標:通過學習,滲透數(shù)形結合和類比的數(shù)學思想,培養(yǎng)學生良好的思維習慣。根據(jù)本節(jié)課內容、高一學生認知特點和我自己的教學風格,本節(jié)課采用“啟發(fā)探索、講練結合”的方法組織教學教法, 在課堂結構上,設計了 ①創(chuàng)設情境——揭示課題②推廣認知——形成概念③鞏固新知——探求規(guī)律④總結反思——提高認識⑤任務后延——自主探究五個層次的學法,它們環(huán)環(huán)相扣,層層深入,從而順利完成教學目標。先由初中的直角三角形中銳角三角函數(shù)的定義,過度到直角坐標系中銳角三角函數(shù)的定義,再發(fā)展到直角坐標系中任意角三角函數(shù)的定義。溫故知新,要讓學生體會知識的產(chǎn)生、發(fā)展過程,就要從源頭上開始,從學生現(xiàn)有認知狀況開始,對銳角三角函數(shù)的復習就必不可少。能表示嗎?怎樣表示?針對剛才的問題點名讓學生回答。【設計意圖】從學生現(xiàn)有知識水平和認知能力出發(fā),創(chuàng)設問題情景,讓學生產(chǎn)生認知沖突,進行必要的啟發(fā),將學生思維引上自主探索、合作交流的“再創(chuàng)造”征程。問題 4:對于確定的角 ,這三個比值是否與P在 的終邊上的位置有關?為什么?先讓學生想象思考,作出主觀判斷,再引導學生觀察右圖,聯(lián)系相似三角形知識,探索發(fā)現(xiàn): 對于銳角α的每一個確定值,六個比值都是確定的,不會隨P在終邊上的移動而變化。 所以,六個比值分別是以角α為自變量、以比值為函數(shù)值的函數(shù)。同時教師強調:由于弧度制使角和實數(shù)建立了一一對應關系,所以三角函數(shù)是以實數(shù)為自變量的函數(shù),對數(shù)學學習能力較好的同學起到了很好的指導作用。(關于值域,到后面再學習)。 指導學生根據(jù)定義自主探索確定三角函數(shù)定義域,有利于在理解的基礎上記住它、應用它,也增進對三角函數(shù)概念的掌握。已知角 的終邊過點 ,求 的六個三角函數(shù)值要求:讀完題目,思考:計算什么?需要準備什么?閉目心算,對照板書,模仿書面表達格式。例2。分析: 終邊上有無窮多個點,根據(jù)三角函數(shù)的定義,只要知道 終邊上任意一個點的坐標,就可以計算這個角的三角函數(shù)值(或判斷其無意義)師生探索:緊扣三角函數(shù)定義求解,首先要在終邊上取定一點。取特殊點能使計算更簡明?!驹O計意圖】判斷三角函數(shù)值的正負符號,是本章教材的一項重要的知識、技能要求。(四)總結反思——提高認識由學生總結本節(jié)課所學習的主要內容:⑴任意角的三角函數(shù)的定義及其定義域;⑵三角函數(shù)的符號規(guī)律。(五)任務后延——自主探究學生經(jīng)過以上四個環(huán)節(jié)的學習,已經(jīng)初步掌握了任意角的三角函數(shù)的定義及三角函數(shù)的符號規(guī)律,有待進一步提高認知水平,因此我針對學生素質的差異設計了有層次的作業(yè),其中思考題的設計思想是:綜合練習鞏固提高,更為下節(jié)的學習內容打下基礎,同時留給學生課后自主探究,這樣既使學生掌握基礎知識,又使學有佘力的學生有所提高,從而達到拔尖和“減負”的目的,以有利于全體學生的發(fā)展。ctα、cscα、secα的定義寫在sinα、csα、tanα的左下方,突出本節(jié)重要內容的主體地位。希望各位領導 、同行對本堂說課提出寶
點擊復制文檔內容
環(huán)評公示相關推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1