freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

正弦定理教案最終版-閱讀頁

2024-10-06 06:34本頁面
  

【正文】 由B<A知B<A,故B應(yīng)為銳角). ∴C=180176。+30176。. ∴C=≈38.(3)∵, ∴sinB=≈ 6. ∴B1≈41176。.由于B<C,故B<C,∴B2≈139176。時,A=180176。+115176。, A=≈24.(4)sinB= =>1. ∴本題無解.點(diǎn)評:此練習(xí)目的是使學(xué)生進(jìn)一步熟悉正弦定理,同時加強(qiáng)解三角形的能力,既要考慮到已知角的正弦值求角的兩種可能,又要結(jié)合題目的具體情況進(jìn)行正確取舍.課堂小結(jié)通過本節(jié)學(xué)習(xí),我們一起研究了正弦定理的證明方法,同時了解了向量的工具性作用,并且明確了利用正弦定理所能解決的兩類有關(guān)三角形問題:已知兩角、一邊解三角形。過程與方法:讓學(xué)生從實(shí)際問題出發(fā),結(jié)合以前學(xué)習(xí)過的直角三角形中的邊角關(guān)系,引導(dǎo)學(xué)生不斷地觀察、比較、分析,采取從特殊到一般以及合情推理的方法發(fā)現(xiàn)并證明正弦定理,使學(xué)生體會完全歸納法在定理證明中的應(yīng)用;讓學(xué)生在應(yīng)用定理解決問題的過程中更深入的理解定理及其作用。從發(fā)現(xiàn)與證明的過程中體驗(yàn)數(shù)學(xué)的探索性與創(chuàng)造性,讓學(xué)生體驗(yàn)成功的喜悅,激發(fā)學(xué)生的好奇心與求知欲。二、教學(xué)重點(diǎn)、難點(diǎn)分析重點(diǎn):通過對銳角三角形邊與角關(guān)系的探索,發(fā)現(xiàn)、證明正弦定理并運(yùn)用正弦定理解決一些簡單的三角形度量問題。三、教法與學(xué)法分析本節(jié)課是教材第一章《解三角形》的第一節(jié),所需主要基礎(chǔ)知識有直角三角形的邊角關(guān)系,三角函數(shù)相關(guān)知識。教學(xué)過程中鼓勵學(xué)生合作交流、動手實(shí)踐,通過對定理的推導(dǎo)、解讀、應(yīng)用,引導(dǎo)學(xué)生主動思考、總結(jié)、歸納解答過程中的內(nèi)在規(guī)律,形成一般結(jié)論。四、學(xué)情分析對于高一的學(xué)生來說,已學(xué)的平面幾何,解直角三角形,三角函數(shù)等知識,有一定觀察分析、解決問題的能力,但對前后知識間的聯(lián)系、理解、應(yīng)用有一定難度,因此思維靈活性受到制約。根據(jù)以上特點(diǎn),教師恰當(dāng)引導(dǎo),提高學(xué)生學(xué)習(xí)主動性,多加以前后知識間的聯(lián)系,帶領(lǐng)學(xué)生直接參與分析問題、解決問題并品嘗勞動成果的喜悅。如果一節(jié)課有個好的開頭,那就意味著成功了一半。學(xué)生:如圖,過點(diǎn)A作BC邊上的高,垂直記作D然后,首先利用題目中的已知數(shù)據(jù)求出角C的大小,接著把題目中的相關(guān)數(shù)據(jù)和角C的值代入上述等式,即可求出b,即AC的值,然后可利用AC、AB、角B、角C的值和三角函數(shù)知識可分別求出CD和BD的長度,把所求出的CD和BD的長度相加即可求出BC的長度。定理的發(fā)現(xiàn):oo教師:如果把本題目中的有關(guān)數(shù)據(jù)變一下,其中A=50,B=80大家又該怎么做呢?學(xué)生1:同樣的做法(仍得作高)學(xué)生2:只需將已知數(shù)據(jù)代入上述等式即可求出兩邊的長度 教師:還需要再次作高嗎? 學(xué)生:不用教師:對于任意的銳角三角形中的“已知兩角及其夾邊,求其他兩邊的長”的問題是否都可以用上述兩個等式進(jìn)行解決呢? 學(xué)生:可以教師:既然這兩個等式適合于任意的銳角三角形,那么我們只需要記住這兩個等式,以后若是再遇見銳角三角形中的這種問題,直接應(yīng)用這兩個等式 并進(jìn)行代入求值即可。定理的探索:教師:大家知道,在直角三角形ABC中:若 則:所以:故:即: 在直角三角形中也成立教師:那么這個等式在鈍角三角形中是否成立,我們又該如何驗(yàn)證呢?請大家思考。(結(jié)論成立)教師:我們在銳角三角形中發(fā)現(xiàn)有這樣一個等式成立,接下來,用類比的方法對它分別在直角三角形和鈍角三角形中進(jìn)行驗(yàn)證,結(jié)果發(fā)現(xiàn),這個等式對于任意的直角三角形和任意的鈍角三角形都成立,那么我們此時能否說:“這個等式對于任意的三角形都成立”呢? 學(xué)生:可以教師:這就是我們這節(jié)課要學(xué)習(xí)的《正弦定理》(引出課題)定理的證明教師:展示正弦定理的證明過程證明:(1)當(dāng)三角形是銳角三角形時,過點(diǎn)A作BC邊上的高線,垂直記作D,過點(diǎn)B向AC作高,垂直記作E,如圖:同理可得:所以易得(2)當(dāng)三角形是直角三角形時;在直角三角形ABC中:若 因?yàn)椋核裕汗剩杭矗海?)當(dāng)三角形是鈍角三角形時(角C為鈍角)過點(diǎn)A作BC邊上的高線,垂直記作D由三角形ABC的面積可得 即:故:所以,對于任意的三角形都有教師:這就是本節(jié)課我們學(xué)習(xí)的正弦定理(給出定理的內(nèi)容)(解釋定理的結(jié)構(gòu)特征)思考:正弦定理可以解決哪類問題呢? 學(xué)生:在一個等式中可以做到“知三求一” 定理的應(yīng)用教師:接下來,讓我們來看看定理的應(yīng)用(回到剛開始的那個實(shí)際問題,用正弦定理解決)(板書步驟)成立。在此之前,學(xué)生已經(jīng)學(xué)習(xí)過了三角形的相關(guān)性質(zhì),它是后續(xù)課程中解三角形的理論依據(jù),因此熟練掌握正弦定理能為接下來學(xué)習(xí)解三角形打下堅(jiān)實(shí)基礎(chǔ),并能在實(shí)際應(yīng)用中靈活變通。探索正弦定理的證明過程,由特殊到一般,數(shù)學(xué)歸納的思想證明結(jié)論。、態(tài)度與價值觀通過對公式證明過程的探究與發(fā)現(xiàn),提高學(xué)生對數(shù)學(xué)的興趣,樹立學(xué)好數(shù)1學(xué)的信心,讓學(xué)生感受數(shù)學(xué)公式的整潔對稱美和與其數(shù)學(xué)的實(shí)際應(yīng)用價值。難點(diǎn):正弦定理的探索及證明,由特殊到一般歸納出正弦定理,掌握正弦定理的內(nèi)容及其證明方法。sinAsinBsinC得出結(jié)論:abc== sinAsinBsinC探究問題:這個結(jié)論是否能推廣到一般三角形?若成立,給出理由。 首先在銳角三角形中進(jìn)行討論(板書)驗(yàn)證過程:E過C點(diǎn)作AB邊的垂線CD,sinA=CD得到:bsinB=CDaCD=bsinA=asinB bsinB=asinA同理,過A點(diǎn)作BC邊的垂線AE,sinC=AE得到:bsinB=AEcAE=bsinC=csinB bsinB=csinC得出結(jié)論:asinA=bsinB=csinC216。解:由正弦定理可知代入數(shù)據(jù)得:故:故A=150o或者30oACsinB=BCsinAsinA=:216。 正弦定理的簡單應(yīng)用:已知兩邊和其中一邊的對角,求其他邊和角時,三角形的解是唯一的嗎?五、板書設(shè)計
點(diǎn)擊復(fù)制文檔內(nèi)容
環(huán)評公示相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1