【摘要】導(dǎo)數(shù)的概念及其幾何意義教學(xué)目標(biāo):1.導(dǎo)數(shù)的概念及幾何意義;2.求導(dǎo)的基本方法;3.導(dǎo)數(shù)的應(yīng)用.教學(xué)重點(diǎn):導(dǎo)數(shù)的綜合應(yīng)用;教學(xué)難點(diǎn):導(dǎo)數(shù)的綜合應(yīng)用.一.知識梳理1.導(dǎo)數(shù)的概念及幾何意義.2.求導(dǎo)的基本方法①定義法:??xf?=????xxfxxfxyx????????
2024-12-09 23:16
【摘要】高考中導(dǎo)數(shù)問題的六大熱點(diǎn)由于導(dǎo)數(shù)其應(yīng)用的廣泛性,為解決函數(shù)問題提供了一般性的方法及簡捷地解決一些實(shí)際問題.因此在高考占有較為重要的地位,其考查重點(diǎn)是導(dǎo)數(shù)判斷或論證單調(diào)性、函數(shù)的極值和最值,利用導(dǎo)數(shù)解決實(shí)際問題等方面,下面例析導(dǎo)數(shù)的六大熱點(diǎn)問題,供參考.一、運(yùn)算問題例1已知函數(shù)22()(1)xbfxx???,求導(dǎo)函數(shù)()fx?.
2024-12-25 06:34
【摘要】-*-§2導(dǎo)數(shù)在實(shí)際問題中的應(yīng)用首頁XINZHIDAOXUE新知導(dǎo)學(xué)ZHONGNANTANJIU重難探究DANGTANGJIANCE當(dāng)堂檢測學(xué)習(xí)目標(biāo)思維脈絡(luò)1.利用實(shí)際問題進(jìn)一步鞏固和加強(qiáng)對導(dǎo)數(shù)概念的理解;理解瞬時速度、邊際成本等概念,并能利用導(dǎo)數(shù)求解有關(guān)實(shí)際問題.2.會用
2024-12-06 23:22
【摘要】知識歸納:導(dǎo)數(shù)的計算一、幾個常用函數(shù)的導(dǎo)數(shù)1C′=0(C為常數(shù))2(xn)′=nxn-1(n∈Q)3(sinx)′=cosx4(cosx)′=-sinx=C(C是常數(shù)),求y′.解:y=f(x)=C,y=f(x+Δx)-f(x)=C-C=0,xy??=0.Y′=C′=xy
2024-12-09 20:36
【摘要】最大值、最小值問題學(xué)習(xí)目標(biāo):理解并掌握函數(shù)最大值與最小值的意義及其求法.弄請函數(shù)極值與最值的區(qū)別與聯(lián)系.養(yǎng)成“整體思維”的習(xí)慣,提高應(yīng)用知識解決實(shí)際問題的能力.學(xué)習(xí)重點(diǎn):求函數(shù)的最值及求實(shí)際問題的最值.學(xué)習(xí)難點(diǎn):求實(shí)際問題的最值.掌握求最值的方法關(guān)鍵是嚴(yán)格套用求最值的步驟,突破難點(diǎn)要把實(shí)際問題“數(shù)學(xué)化”,即建立數(shù)學(xué)模型.學(xué)
2024-12-25 06:35
【摘要】第3課時計算導(dǎo)數(shù),求函數(shù)y=c,y=x,y=x2,y=等的導(dǎo)數(shù).y=c,y=x,y=x2,y=等的導(dǎo)數(shù).y=c,y=x,y=x2,y=等的導(dǎo)數(shù)公式解決問題..根據(jù)導(dǎo)數(shù)的概念,我們知道可以用定義法求函數(shù)f(x)=x3的導(dǎo)數(shù),那么是否有公式法來求它的導(dǎo)數(shù)呢?問題1:
2024-12-25 06:33
【摘要】【成才之路】2021-2021學(xué)年高中數(shù)學(xué)第3章2第1課時實(shí)際問題中導(dǎo)數(shù)的意義課時作業(yè)北師大版選修2-2一、選擇題1.某人拉動一個物體前進(jìn),他所做的功W是時間t的函數(shù)W=W(t),則W′(t0)表示()A.t=t0時做的功B.t=t0時的速度C.t=t0時的位移D.t=t0時
2024-12-25 06:27
【摘要】導(dǎo)數(shù)的概念及其幾何意義變化率問題:已知函數(shù)y=f(x),令Δx=21xx?,21()()yfxfx??,則當(dāng)0x?時,比值2121()()fxfxxx??=yx,稱作函數(shù)f(x)從1x到2x得平均變化率.:物體在某一時刻的速度.Δx=0xx?,函數(shù)的增量000()
【摘要】導(dǎo)數(shù)與函數(shù)的單調(diào)性教學(xué)過程:一.創(chuàng)設(shè)情景函數(shù)是客觀描述世界變化規(guī)律的重要數(shù)學(xué)模型,研究函數(shù)時,了解函數(shù)的贈與減、增減的快與慢以及函數(shù)的最大值或最小值等性質(zhì)是非常重要的.通過研究函數(shù)的這些性質(zhì),我們可以對數(shù)量的變化規(guī)律有一個基本的了解.下面,我們運(yùn)用導(dǎo)數(shù)研究函數(shù)的性質(zhì),從中體會導(dǎo)數(shù)在研究函數(shù)中的作用。二.新課講授1.問題:圖(1),
【摘要】變化的快慢與變化率學(xué)習(xí)目標(biāo):了解瞬時速度的定義,能夠區(qū)分平均速度和瞬時速度.能求出簡單函數(shù)在某一點(diǎn)的導(dǎo)數(shù)(瞬時變化率)學(xué)習(xí)重點(diǎn):導(dǎo)數(shù)概念的形成,導(dǎo)數(shù)內(nèi)涵的理解一、自主學(xué)習(xí)[問題1]一般地,函數(shù)12(),,yfxxx?是其定義域內(nèi)不同的兩點(diǎn),那么函數(shù)的變化率可以用式子表示,我們把這個式子稱為函數(shù)
2024-12-25 06:39
【摘要】第4課時導(dǎo)數(shù)在實(shí)際問題中的應(yīng)用、用料最省、效率最高等優(yōu)化問題,體會導(dǎo)數(shù)在解決實(shí)際問題中的作用.,體會導(dǎo)數(shù)方法在研究函數(shù)性質(zhì)中的一般性和有效性.飲料瓶大小對飲料公司利潤有何影響?下圖是某種品牌飲料的三種規(guī)格不同的產(chǎn)品,它們的價格如下表所示:規(guī)格(L)2價格(元)
【摘要】拓展資料:牛頓的故事被譽(yù)為近代科學(xué)的開創(chuàng)者牛頓,在科學(xué)上作出了巨大貢獻(xiàn)。他的三大成就——光的分析、萬有引力定律和微積分學(xué),對現(xiàn)代科學(xué)的發(fā)展奠定了基礎(chǔ)。牛頓為什么能在科學(xué)上獲得巨大成就?他怎樣由一個平常的人成為一個偉大的科學(xué)家?要回答這些問題,我們不禁要聯(lián)想到他刻苦學(xué)習(xí)和勤奮工作的幾個故事?!拔乙欢ㄒ^他!”一談到牛頓,人們可能認(rèn)為他小時
2024-12-09 23:15
【摘要】知識點(diǎn)撥:利用導(dǎo)數(shù)求函數(shù)的極值例求下列函數(shù)的極值:1.xxxf12)(3??;2.xexxf??2)(;3..212)(2???xxxf分析:按照求極值的基本方法,首先從方程0)(??xf求出在函數(shù))(xf定義域內(nèi)所有可能的極值點(diǎn),然后按照函數(shù)極值的定義判斷在這些點(diǎn)處是否取得極值.解:1.函
【摘要】解剖高考對導(dǎo)數(shù)的考查要求高考對導(dǎo)數(shù)的考查要求是:①了解導(dǎo)數(shù)的實(shí)際背景(如瞬時速度、加速度、光滑曲線切線的斜率等),掌握函數(shù)在一點(diǎn)處的導(dǎo)數(shù)的定義和導(dǎo)數(shù)的幾何意義,理解導(dǎo)數(shù)的概念;②熟記導(dǎo)數(shù)的基本公式,掌握兩個函數(shù)和、差、積、商的求導(dǎo)法則,了解復(fù)合函數(shù)的求導(dǎo)法則,會求某些簡單函數(shù)的導(dǎo)數(shù);③理解可導(dǎo)函數(shù)的單調(diào)性與其導(dǎo)數(shù)的關(guān)系,了解可導(dǎo)函數(shù)在某點(diǎn)取得極
【摘要】變化的快慢與變化率【例1】已知質(zhì)點(diǎn)M按規(guī)律s=2t2+3作直線運(yùn)動(位移單位:cm,時間單位:s),當(dāng)t=2,Δt=,求ts??;(2)當(dāng)t=2,Δt=,求ts??;(3)求質(zhì)點(diǎn)M在t=2時的瞬時速度【例2】某一物體的運(yùn)動規(guī)律為s=t3-t2+2t+5(其中s表示位移,t表