【摘要】雙曲線的幾何性質(zhì)濟(jì)源三中盧新民一、知識(shí)再現(xiàn)前面我們學(xué)習(xí)了橢圓的簡(jiǎn)單的幾何性質(zhì):范圍、對(duì)稱性、頂點(diǎn)、離心率.我們來共同回顧一下橢圓
2024-12-08 10:03
【摘要】關(guān)于x軸、y軸、原點(diǎn)對(duì)稱圖形方程范圍對(duì)稱性頂點(diǎn)離心率)0(1????babyax2222A1(-a,0),A2(a,0)A1(0,-a),A2(0,a)),b(abxay001????2222Rxayay????,或關(guān)于x軸、y軸、原點(diǎn)對(duì)稱)1
2024-12-07 17:10
【摘要】雙曲線方程和性質(zhì)應(yīng)用xyoax?或ax??ay??ay?或)0,(a?),0(a?xaby??xbay??ace?)(222bac??其中關(guān)于坐標(biāo)軸和原點(diǎn)都對(duì)稱性質(zhì)雙曲線)0,0(12222??
2024-12-02 17:25
【摘要】選修1-1雙曲線的幾何性質(zhì)一、選擇題1.已知雙曲線的離心率為2,焦點(diǎn)是(-4,0),(4,0),則雙曲線方程為()24-y212=1B.x212-y24=1210-y26=1D.x26-y210=1[答案]A[解析]∵e=
2024-12-09 22:00
2024-11-29 23:30
【摘要】平面內(nèi)與兩個(gè)定點(diǎn)F1、F2的距離的差的絕對(duì)值等于常數(shù)(小于|F1F2|)的點(diǎn)的軌跡叫做雙曲線.這兩個(gè)定點(diǎn)叫做雙曲線的焦點(diǎn),兩焦點(diǎn)的距離叫做雙曲線的焦距。:)22(,2||||||21caaMFMF???即).0,0(12222????babxay).0,0(12222????babyax:
2024-12-11 05:33
【摘要】yxoF2MF1(1)雙曲線標(biāo)準(zhǔn)方程中,a0,b0,但a不一定大于b;有別于橢圓中ab.(2)雙曲線標(biāo)準(zhǔn)方程中,如果x2項(xiàng)的系數(shù)是正的,那么焦點(diǎn)在x軸上;如果y2項(xiàng)的系數(shù)是正的,那么焦點(diǎn)在y軸上.有別于橢圓通過比較分母的大小來判定焦點(diǎn)在哪一坐標(biāo)軸上。(3)雙曲線標(biāo)準(zhǔn)方程中a、b、
2024-12-03 11:43
【摘要】復(fù)習(xí):、焦點(diǎn)、焦距、兩種情形的標(biāo)準(zhǔn)方程。雙曲線定義:平面內(nèi)與兩個(gè)定點(diǎn)、的距離的差的絕對(duì)值等于常數(shù)(小于)的點(diǎn)的軌跡叫做雙曲線。這兩個(gè)定點(diǎn)叫做雙曲線的焦點(diǎn),兩焦點(diǎn)的距離叫雙曲線的焦距。1F2F21||FF若焦點(diǎn)在x軸上,雙曲線的標(biāo)準(zhǔn)方程為:22
2024-12-09 18:48
【摘要】【課堂新坐標(biāo)】(教師用書)2021-2021學(xué)年高中數(shù)學(xué)雙曲線的幾何性質(zhì)課后知能檢測(cè)蘇教版選修2-1一、填空題1.(20212江蘇高考)雙曲線x216-y29=1的兩條漸近線的方程為________.【解析】由雙曲線方程可知a=4,b=3,所以兩條漸近線方程為y=±34
2024-12-25 09:29
【摘要】第三節(jié)雙曲線:平面內(nèi)到兩個(gè)定點(diǎn)F1、F2的距離的______________________________的點(diǎn)的軌跡是雙曲線.這兩個(gè)定點(diǎn)叫做雙曲線的________,兩焦點(diǎn)的距離叫雙曲線的________,即若點(diǎn)P為雙曲線上任意一點(diǎn),則有|PF1-PF2|=,________,若2a=F1F2,則P
2024-12-02 19:05
【摘要】雙曲線及其標(biāo)準(zhǔn)方程1.橢圓的定義和等于常數(shù)2a(2a|F1F2|0)的點(diǎn)的軌跡.平面內(nèi)與兩定點(diǎn)F1、F2的距離的1F2F??0,c???0,cXYO??yxM,2.引入問題:差等于常數(shù)的點(diǎn)的軌跡是什么呢?平面內(nèi)與兩定點(diǎn)F1、F2的距離的復(fù)習(xí)雙曲
2024-12-09 16:28
【摘要】§雙曲線的簡(jiǎn)單性質(zhì)設(shè)計(jì)人:趙軍偉審定:數(shù)學(xué)備課組【學(xué)習(xí)目標(biāo)】:(1)根據(jù)條件,求出表示曲線的方程;(2)通過方程,研究曲線的性質(zhì).、對(duì)稱性及對(duì)稱軸,對(duì)稱中心、離心率、頂點(diǎn)、漸近線的概念;、會(huì)用雙曲線的定義解決實(shí)際問題;通過例題和探究了解雙曲線的第二定義,準(zhǔn)線及焦半徑的概念..【學(xué)習(xí)重點(diǎn)】
2024-12-08 18:59
【摘要】雙曲線的性質(zhì)(一)222bac??定義圖象方程焦點(diǎn)的關(guān)系||MF1|-|MF2||=2a(02a|F1F2|)F(±c,0)F(0,±c)12222??byax12
2024-12-08 08:47
【摘要】雙曲線的性質(zhì)(一)莫旗職教中心徐志宏222bac??定義圖象方程焦點(diǎn)的關(guān)系||MF1|-|MF2||=2a(02a|F1F2|)F(±c,0)F(0,±c)122
2024-12-20 11:22
【摘要】第一課時(shí)?學(xué)習(xí)目標(biāo)?情境設(shè)置?探索研究?反思應(yīng)用?歸納總結(jié)?作業(yè)學(xué)習(xí)目標(biāo)?、標(biāo)準(zhǔn)方程及其求法;?、焦距、焦點(diǎn)位置與方程關(guān)系;?.情境設(shè)置?橢圓的定義?把平面內(nèi)與兩個(gè)定點(diǎn)F1、F2的距離和等于常數(shù)(大于|F1F2|)的點(diǎn)軌跡叫做橢圓。這兩
2024-12-09 16:17