【摘要】第1頁共35頁普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書—數(shù)學(xué)[人教版]高三新數(shù)學(xué)第一輪復(fù)習(xí)教案(講座35)—曲線方程及圓錐曲線的綜合問題一.課標(biāo)要求:1.由方程研究曲線,特別是圓錐曲線的幾何性質(zhì)問題?;癁榈仁浇鉀Q,要加強(qiáng)等價(jià)轉(zhuǎn)化思想的訓(xùn)練;2.通過圓錐曲線與方程的學(xué)習(xí),進(jìn)一步體會(huì)數(shù)形結(jié)合的思想;3.了解圓錐曲線
2024-08-26 15:29
【摘要】圓錐曲線軌跡方程的解法目錄一題多解 2一.直接法 3二.相關(guān)點(diǎn)法 6三.幾何法 10四.參數(shù)法 12五.交軌法 14六.定義法 16一題多解設(shè)圓C:(x-1)2+y2=1,過原點(diǎn)O作圓的任意弦OQ,求所對(duì)弦的中點(diǎn)P的軌跡方程。一.直接法設(shè)P(
2025-07-07 19:28
【摘要】圓錐曲線?解析幾何是在坐標(biāo)系的基礎(chǔ)上,用坐標(biāo)表示點(diǎn)、用方程表示點(diǎn)的軌跡——曲線(包括直線)。通過研究方程的性質(zhì),進(jìn)一步研究曲線的性質(zhì)。也可以說,解析幾何是用代數(shù)的方法研究幾何問題的一門數(shù)學(xué)學(xué)科。本章是平面解析幾何內(nèi)容中的圓錐曲線部分,是在學(xué)生已掌握平面幾何知識(shí)與平面直角坐標(biāo)系、平面向量、兩點(diǎn)距離公式及基本初等函數(shù)、直線與圓的方程等知識(shí)的基礎(chǔ)上
2024-12-11 02:39
【摘要】精品資源普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書—數(shù)學(xué)[人教版]高三新數(shù)學(xué)第一輪復(fù)習(xí)教案(講座35)—曲線方程及圓錐曲線的綜合問題一.課標(biāo)要求:1.由方程研究曲線,特別是圓錐曲線的幾何性質(zhì)問題常化為等式解決,要加強(qiáng)等價(jià)轉(zhuǎn)化思想的訓(xùn)練;2.通過圓錐曲線與方程的學(xué)習(xí),進(jìn)一步體會(huì)數(shù)形結(jié)合的思想;3.了解圓錐曲線的簡(jiǎn)單應(yīng)用。二.命題走向近年來圓錐曲線在高考中比較穩(wěn)定,解答題往往以中
2025-04-09 06:47
【摘要】九、《圓錐曲線與方程》變式試題XYPODM1.(人教A版選修1-1,2-1第39頁例2)如圖,在圓上任取一點(diǎn)P,過點(diǎn)P作X軸的垂線段PD,D為垂足.當(dāng)點(diǎn)P在圓上運(yùn)動(dòng)時(shí),線段PD的中點(diǎn)M的軌跡是什么?變式1:設(shè)點(diǎn)P是圓上的任一點(diǎn),定點(diǎn)D的坐標(biāo)為(8,0).當(dāng)點(diǎn)P在圓上運(yùn)動(dòng)時(shí),求線段PD的中點(diǎn)M的軌跡方程.解:設(shè)點(diǎn)M的坐標(biāo)為,點(diǎn)P的坐標(biāo)為,則,.即,.
2024-08-23 10:24
【摘要】圓錐曲線與方程習(xí)題圓錐曲線與方程練習(xí)題及答案一、選擇題【共12道小題】1、以的焦點(diǎn)為頂點(diǎn),頂點(diǎn)為焦點(diǎn)的橢圓方程為(?)A.???????????B.????
2024-08-23 14:53
【摘要】WORD資料可編輯課題名稱《圓錐曲線與方程》單元教學(xué)設(shè)計(jì)設(shè)計(jì)者姓名郭曉泉設(shè)計(jì)者單位華亭縣第二中學(xué)
2025-05-27 01:30
【摘要】2009屆廣東?。ㄕn改區(qū))各地市期末數(shù)學(xué)分類試題《直線與圓及其方程》、《圓錐曲線與方程》部分《直線與圓及其方程》、《圓錐曲線與方程》一、選擇題1.【廣東韶關(guān)·文】BA.1B.C.D.2.【潮州·理科】8、(文科10)已知點(diǎn)是圓:內(nèi)一點(diǎn),直線是以為中點(diǎn)的弦所在的直線,若直線的
2025-08-06 19:44
【摘要】大慶目標(biāo)教育圓錐曲線一、知識(shí)結(jié)構(gòu)在平面直角坐標(biāo)系中,如果某曲線C(看作適合某種條件的點(diǎn)的集合或軌跡)上的點(diǎn)與一個(gè)二元方程f(x,y)=0的實(shí)數(shù)解建立了如下的關(guān)系:(1)曲線上的點(diǎn)的坐標(biāo)都是這個(gè)方程的解;(2);這條曲線叫做方程的曲線.點(diǎn)與曲線的關(guān)系若曲線C的方程是f(x,y)=0,則點(diǎn)P0(x0,y0)在曲線C上f(x0,y0)=0;點(diǎn)P0(x0,y0)
2024-08-23 14:02
【摘要】軌跡方程的若干求法,供同學(xué)們參考.一、直接法直接根據(jù)等量關(guān)系式建立方程. 例1 已知點(diǎn),動(dòng)點(diǎn)滿足,則點(diǎn)的軌跡是( ?。 。粒畧A B.橢圓 C.雙曲線 D.拋物線 解析:由題知,, 由,得,即, 點(diǎn)軌跡為拋物線.故選D. 二、定義法 運(yùn)用有關(guān)曲線的定義求軌跡方程. 例2 在中,上的兩條中線長(zhǎng)度之和為39,求的重心的軌跡方程.
2025-08-04 00:18
【摘要】......§知識(shí)要點(diǎn)一、橢圓方程.1.橢圓方程的第一定義:⑴①橢圓的標(biāo)準(zhǔn)方程:i.中心在原點(diǎn),焦點(diǎn)在x軸上:.ii.中心在原點(diǎn),焦點(diǎn)在軸上:.②一般方程:.③橢
2025-07-07 23:13
【摘要】精品資源第八章圓錐曲線的方程1、已知F1、F2是雙曲線的兩焦點(diǎn),以線段F1F2為邊作正三角形,若雙曲線恰好平分正三角形的另兩邊,則雙曲線的離心率是() A、 B、 C、 D、MxyNF21、D【思路分析】法一:F2(c,0),M(0,c)依MF2中點(diǎn)N()在雙曲線上,得=1即=1=1.注意到e1,解
2025-07-14 16:44
【摘要】運(yùn)用聯(lián)想探究圓錐曲線的切線方程現(xiàn)行人教版統(tǒng)編教材高中數(shù)學(xué)第二冊(cè)上、第75頁例題2,給出了經(jīng)過圓上一點(diǎn)的切線方程為;當(dāng)在圓外時(shí),過點(diǎn)引切線有且只有兩條,過兩切點(diǎn)的弦所在直線方程為。那么,在圓錐曲線中,又將如何?我們不妨進(jìn)行幾個(gè)聯(lián)想。聯(lián)想一:(1)過橢圓上一點(diǎn)切線方程為;(2)當(dāng)在橢圓的外部時(shí),過引切線有兩條,過兩切點(diǎn)的弦所在直線方程為:證明:(1)的兩邊對(duì)求導(dǎo),得,得,由
2025-07-09 04:24
【摘要】WORD資料可編輯圓錐曲線自編講義之基本量要求熟悉圓錐曲線的a、b、c、e、p、漸近線方程、準(zhǔn)線方程、焦點(diǎn)坐標(biāo)等數(shù)據(jù)的幾何意義和相互關(guān)系。(2011安徽理2)雙曲線的實(shí)軸長(zhǎng)是 (A)2 (B)2 (C)4 (D)4【答案】C
2025-05-02 00:20
【摘要】曲線方程及圓錐曲線典型例題解析一.知識(shí)要點(diǎn)1.曲線方程(1)求曲線(圖形)方程的方法及其具體步驟如下:步驟含義說明1、“建”:建立坐標(biāo)系;“設(shè)”:設(shè)動(dòng)點(diǎn)坐標(biāo)。建立適當(dāng)?shù)闹苯亲鴺?biāo)系,用(x,y)表示曲線上任意一點(diǎn)M的坐標(biāo)。(1)所研究的問題已給出坐標(biāo)系,即可直接設(shè)點(diǎn)。(2)沒有給出坐標(biāo)系,首先要選取適當(dāng)?shù)淖鴺?biāo)系。2、現(xiàn)
2025-08-10 09:19