【摘要】淺談放縮法在不等式證明中的應(yīng)用 篇一:《放縮法在不等式的應(yīng)用》論文 放縮法在不等式的應(yīng)用 所謂放縮法確實是利用不等式的傳遞性,對照證標(biāo)題的進(jìn)展合情合理的放大和縮小的過程,在使用放縮法證題時要...
2025-03-26 01:26
【摘要】第一篇:用放縮法證明數(shù)列求和中的不等式 用放縮法證明數(shù)列求和中的不等式 近幾年,高考試題常把數(shù)列與不等式的綜合題作為壓軸題,而壓軸題的最后一問又重點考查用放縮法證明不等式,這類試題技巧性強(qiáng),難度大...
2024-10-28 05:08
【摘要】第一篇:利用放縮法證明不等式舉例 利用放縮法證明不等式舉例 高考中利用放縮方法證明不等式,文科涉及較少,但理科卻常常出現(xiàn),且多是在壓軸題中出現(xiàn)。放縮法證明不等式有法可依,但具體到題,又常常沒有定法...
2024-10-27 12:24
【摘要】第一篇:淺談用放縮法證明不等式 淮南師范學(xué)院2012屆本科畢業(yè)論文1 目錄 引言?????????????????????????????????(2)?????????????????????...
2024-10-28 08:11
【摘要】第一篇:構(gòu)造法證明函數(shù)不等式 構(gòu)造法證明函數(shù)不等式 1、利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性極值和最值,再由單調(diào)性來證明不等式是函數(shù)、導(dǎo)數(shù)、不等式綜合中的一個難點,也是近幾年高考的熱點. 2、解題技巧是構(gòu)造...
2024-10-27 20:30
【摘要】第一篇:用放縮法證明不等式1 用放縮法證明不等式 時間:2009-01-1310:47點擊: 1230次 不等式是高考數(shù)學(xué)中的難點,而用放縮法證明不等式學(xué)生更加難以掌握。不等式是衡量學(xué)生數(shù)學(xué)素...
2024-10-28 03:53
【摘要】第一篇:放縮法證明數(shù)列不等式經(jīng)典例題 放縮法證明數(shù)列不等式 主要放縮技能:=2=-nn+1n(n+1)nn(n-1)n-1n 114411===2(-) 22n4n-1(2n+1)(2n...
2024-10-28 01:13
【摘要】不等式的證明復(fù)習(xí)?不等式證明的常用方法:?比較法、綜合法、分析法反證法先假設(shè)要證明的命題不成立,以此為出發(fā)點,結(jié)合已知條件,應(yīng)用公理、定義、定理、性質(zhì)等,進(jìn)行正確的推理,得到矛盾,說明假設(shè)不正確,從而間接說明原命題成立的方法。1.xy02.1x12.yxy
2024-09-11 17:41
【摘要】放縮法證明數(shù)列不等式主要放縮技能:1.2.3.4.5.6.,最大值為,且(1)求;(2)證明::,且,;(1)求證:數(shù)列是等差數(shù)列;(2)解關(guān)于數(shù)列的不等式:(3)記,證明:例4.已知數(shù)列滿足:是公差為1的等差數(shù)
2025-05-12 02:44
【摘要】第一篇:用放縮法證明與數(shù)列和有關(guān)的不等式 用放縮法證明與數(shù)列和有關(guān)的不等式 湖北省天門中學(xué)薛德斌 數(shù)列與不等式的綜合問題常常出現(xiàn)在高考的壓軸題中,是歷年高考命題的熱點,這類問題能有效地考查學(xué)生綜...
2024-10-27 22:27
【摘要】第一篇:淺談用放縮法證明不等式的方法與技巧 淺談用放縮法證明不等式的方法與技巧 分類:學(xué)法指導(dǎo) 放縮法:為放寬或縮小不等式的范圍的方法。常用在多項式中“舍掉一些正(負(fù))項”而使不等式各項之和變小...
2024-10-28 06:44
【摘要】第一篇:構(gòu)造法證明不等式5 構(gòu)造法證明不等式(2) (以下的構(gòu)造方法要求過高,即使不會也可以,如果沒有時 間就不用看了) 在學(xué)習(xí)過程中,常遇到一些不等式的證明,看似簡單,但卻無從下手,多種常用...
2024-10-28 01:37
【摘要】第一篇:巧用構(gòu)造函數(shù)法證明不等式 構(gòu)造函數(shù)法證明不等式 一、構(gòu)造分式函數(shù),利用分式函數(shù)的單調(diào)性證明不等式 【例1】證明不等式:|a|+|b||a+b| 1+|a|+|b|≥1+|a+b| 證...
2024-10-26 14:47
【摘要】Forpersonaluseonlyinstudyandresearch;notformercialuse幾種常見的放縮法證明不等式的方法一、放縮后轉(zhuǎn)化為等比數(shù)列。例1.滿足:(1)用數(shù)學(xué)歸納法證明:(2),求證:解:(1)略(2)又,迭乘得:點評:把握“”這一特征對“”進(jìn)行變形,
2024-09-03 05:50
【摘要】第一篇:利用放縮法證明數(shù)列不等式的技巧“揭秘” 龍源期刊網(wǎng)://. 利用放縮法證明數(shù)列不等式的技巧“揭秘”作者:顧冬生 來源:《新高考·高三數(shù)學(xué)》2013年第06期 數(shù)列型不等式的證明題,常常...
2024-10-28 22:50