【摘要】第一篇:不等式證明之函數(shù)構(gòu)造法(顏秀華) 不等式證明之函數(shù)構(gòu)造法 作者顏秀華 (湖南省,長沙市第七中學(xué),郵編410003) 【摘要】利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性極值和最值,再由單調(diào)性來證明不等式是...
2024-10-26 05:25
【摘要】第一篇:對構(gòu)造函數(shù)法證明不等式的再研究 龍源期刊網(wǎng)://. 對構(gòu)造函數(shù)法證明不等式的再研究 作者:時英雄 來源:《理科考試研究·高中》2013年第10期 某刊一文闡述了構(gòu)造法證明不等式的九個...
2024-10-26 17:38
【摘要】第一篇:導(dǎo)數(shù)證明不等式構(gòu)造函數(shù)法類別(學(xué)生版) 導(dǎo)數(shù)證明不等式構(gòu)造函數(shù)法類別 1、移項(xiàng)法構(gòu)造函數(shù) 1£ln(x+1)£xx+11-1,分析:本題是雙邊不等式,其右邊直接從已知函數(shù)證明,左邊構(gòu)造函...
2024-10-26 15:00
【摘要】第一篇:構(gòu)造法與放縮法在不等式證明中的運(yùn)用 構(gòu)造法與放縮法在不等式證明中的運(yùn)用 例1:設(shè)函數(shù)f(x)=x-(x+1)ln(x+1)(x-1).(1)求f(x)的單調(diào)區(qū)間; (2)證明:當(dāng)nm...
2024-10-28 03:31
【摘要】第一篇:不等式證明20法 不等式證明方法大全 1、比較法(作差法) 在比較兩個實(shí)數(shù)a和b的大小時,可借助a-b的符號來判斷。步驟一般為:作差——變形——判斷(正號、負(fù)號、零)。變形時常用的方法有...
2024-10-28 23:16
【摘要】第一篇:向量法證明不等式 向量法證明不等式 高中新教材引入平面向量和空間向量,將其延伸到歐氏空間上的n維向量,向量的加、減、,則高中階段的向量即為n=2,,b是歐氏空間的兩向量,且a=(x1,x2...
2024-11-05 17:00
【摘要】第一篇:2014年數(shù)學(xué)高考專題--用構(gòu)造局部不等式法證明不等式[模版] 2014年數(shù)學(xué)高考專題--用構(gòu)造局部不等式法證明不等式 有些不等式的證明,若從整體上考慮難以下手,可構(gòu)造若干個結(jié)構(gòu)完全相同的...
2024-10-26 22:06
【摘要】第一篇:賦值法證明不等式 賦值法證明不等式的有關(guān)問題 1、已知函數(shù)f(x)=lnx (1)、求函數(shù)g(x)=(x+1)f(x)-2x+2(x31)的最小值; (2)、當(dāng)0 222a(b-a)...
2024-10-29 06:45
【摘要】第一篇:構(gòu)造函數(shù),利用導(dǎo)數(shù)證明不等式 構(gòu)造函數(shù),利用導(dǎo)數(shù)證明不等式 湖北省天門中學(xué)薛德斌2010年10月 例 1、設(shè)當(dāng)x?[a,b]時,f/(x)g/(x),求證:當(dāng)x?[a,b]時,f(x...
2024-10-26 21:14
【摘要】第一篇:構(gòu)造函數(shù)法證明不等式的八種方法 構(gòu)造函數(shù)法證明不等式的八種方法 利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性極值和最值,再由單調(diào)性來證明不等式是函數(shù)、導(dǎo)數(shù)、不等式綜合中的一個難點(diǎn),也是近幾年高考的熱點(diǎn)。 解...
2024-10-28 04:52
【摘要】第一篇:構(gòu)造函數(shù)證明數(shù)列不等式答案 構(gòu)造函數(shù)證明數(shù)列不等式答案 : ln22+ln33+ln44+L+ ln33 nn 3- n 5n+66 (n?N).* 解析:先構(gòu)造函數(shù)有l(wèi)...
2024-10-28 06:10
【摘要】第一篇:構(gòu)造函數(shù),結(jié)合導(dǎo)數(shù)證明不等式 構(gòu)造函數(shù),結(jié)合導(dǎo)數(shù)證明不等式 摘要:運(yùn)用導(dǎo)數(shù)法證明不等式首先要構(gòu)建函數(shù),以函數(shù)作為載體可以用移項(xiàng)作差,直接構(gòu)造;合理變形,等價構(gòu)造;分析(條件)結(jié)論,特征構(gòu)造...
2024-10-28 05:32
【摘要】第一篇:導(dǎo)數(shù)證明不等式構(gòu)造函數(shù)法類別(教師版) 導(dǎo)數(shù)證明不等式構(gòu)造函數(shù)法類別 1、移項(xiàng)法構(gòu)造函數(shù) 1£ln(x+1)£xx+11-1,分析:本題是雙邊不等式,其右邊直接從已知函數(shù)證明,左邊構(gòu)造函...
2024-10-27 22:43
【摘要】不等式的證明(放縮法)1.設(shè),,則的大小關(guān)系是()A.B.C.D.2.已知三角形的三邊長分別為,設(shè),則與的大小關(guān)系是()A.B.C.D.3.設(shè)不等的兩個正數(shù)滿足,則的取值范
2024-09-03 12:58
【摘要】精品資源構(gòu)造法巧證不等式解題過程實(shí)質(zhì)上包含著多次思維的轉(zhuǎn)化過程,如果從分析問題所提供的信息知道其本質(zhì)與相關(guān)知識的內(nèi)在聯(lián)系,那么該題就可以考慮轉(zhuǎn)化為運(yùn)用“構(gòu)造”的方法來解(證),可以達(dá)到優(yōu)化解題模式的奇妙效果.“構(gòu)造”是一種重要而靈活的思維方式,,需要有敏銳的觀察、豐富的聯(lián)想、靈活的構(gòu)思、,在更廣闊的背景下考察問題中所涉及的代數(shù)、:(1)要有明確的方向,即為何構(gòu)造;(2)要弄清條件的本
2024-08-04 16:44