【摘要】第一篇:《中心對(duì)稱》教學(xué)案例及反思 《中心對(duì)稱》教學(xué)案例及反思 一、教材分析 (一)、地位與作用 本節(jié)課主要學(xué)習(xí)中心對(duì)稱的概念和性質(zhì)。中心對(duì)稱是旋轉(zhuǎn)變換的特殊形式,所以已經(jīng)學(xué)過的軸對(duì)稱變換和旋...
2024-10-21 14:54
【摘要】中心對(duì)稱教學(xué)反思范文(精選4篇) 中心對(duì)稱教學(xué)反思1 成功之處: (1)本節(jié)課,我通過復(fù)習(xí)中心對(duì)稱的定義和性質(zhì),大膽的放手讓學(xué)生自主畫圖,使學(xué)生順利的找到了要學(xué)的新知識(shí)與已學(xué)知識(shí)...
2024-12-06 02:54
【摘要】數(shù)學(xué)的對(duì)稱美是客觀世界的一個(gè)側(cè)面的反映.哥白尼說:“在這種有條不紊的安排之下,宇宙中存在著奇妙的對(duì)稱……”.對(duì)稱是廣義的,字母的對(duì)稱,結(jié)構(gòu)的對(duì)稱,圖形的對(duì)稱,解法的對(duì)稱……無論哪種對(duì)稱,都是美好的.,...
2024-11-19 00:34
【摘要】第一篇:數(shù)學(xué)教材章節(jié)《中心對(duì)稱圖形》教學(xué)反思 著名的美國(guó)教育心理學(xué)家波斯納提出了一個(gè)教師成長(zhǎng)公式:教師成長(zhǎng)=經(jīng)驗(yàn)反思。每次上完課后,反思自己的教學(xué)行為,總結(jié)教學(xué)中的得與失,這既是一種學(xué)習(xí),也是在不斷...
2024-11-15 04:49
【摘要】第一篇:中心對(duì)稱圖形教學(xué)設(shè)計(jì)1 教學(xué)目標(biāo): (1)知識(shí)與技能: 了解中心對(duì)稱圖形及其基本性質(zhì);掌握平行四邊形是中心對(duì)稱圖形。(2)過程與方法: 通過觀察、發(fā)現(xiàn)、探究的方法,理解中心對(duì)稱圖形...
2024-11-15 01:17
【摘要】第2課時(shí)中心對(duì)稱與中心對(duì)稱圖形滬科版九年級(jí)下冊(cè)狀元成才路新課導(dǎo)入問題1:把圖中三角形繞定點(diǎn)O旋轉(zhuǎn)180°,你有什么發(fā)現(xiàn)?ABCO180°狀元成才路問題2:如圖,線段AC、BD相交于點(diǎn)O,OA=OC,
2025-04-13 21:17
【摘要】中心對(duì)稱與中心對(duì)稱圖形中心對(duì)稱與中心對(duì)稱圖形(第1課時(shí))【教學(xué)目標(biāo)】經(jīng)歷觀察.操作.分析等數(shù)學(xué)活動(dòng)過程,通過具體實(shí)例認(rèn)識(shí)中心對(duì)稱,知道中心對(duì)稱的性質(zhì).【教學(xué)重點(diǎn)】⒈中心對(duì)稱的涵義⒉中心對(duì)稱的性質(zhì).⒊成中心對(duì)稱的圖形的畫法【教學(xué)難點(diǎn)】⒈中心對(duì)稱的性質(zhì).⒉成中心對(duì)稱的圖形的畫法【設(shè)計(jì)
2025-02-10 21:14
【摘要】中心對(duì)稱與中心對(duì)稱圖形小雄中學(xué)數(shù)學(xué)組張安明一.知識(shí)回顧:把一個(gè)圖形繞著某一點(diǎn)旋轉(zhuǎn)1800,如果它能與另一個(gè)圖形重合,就說這兩個(gè)圖形關(guān)于這個(gè)點(diǎn)對(duì)稱或中心對(duì)稱.2.中心對(duì)稱的性質(zhì):⑴關(guān)于中心對(duì)稱的兩個(gè)圖形是全等形⑵關(guān)于中心對(duì)稱的兩個(gè)圖形,對(duì)稱點(diǎn)連線都經(jīng)過對(duì)稱中
2025-01-15 17:37
【摘要】(1)把其中一個(gè)圖案繞點(diǎn)O旋轉(zhuǎn)180°,你有什么發(fā)現(xiàn)?重合重合觀察(2)線段AC,BD相交于點(diǎn)O,OA=OC,OB=△OCD繞點(diǎn)O旋轉(zhuǎn)180°,你有什么發(fā)現(xiàn)?ACBADE像這樣把一個(gè)圖形繞著某一點(diǎn)旋轉(zhuǎn)180度,如果它能夠和另一個(gè)圖
2025-01-12 21:32
【摘要】(1)這些圖形有什么共同的特點(diǎn)?都是旋轉(zhuǎn)對(duì)稱圖形。(2)這些圖形分別繞旋轉(zhuǎn)中心旋轉(zhuǎn)多少度后與自身重合?第一個(gè)圖形的旋轉(zhuǎn)角度為120°或240°第二個(gè)圖形的旋轉(zhuǎn)角度為72°或144°或216°或288°第三個(gè)圖形的旋轉(zhuǎn)角度為90°或180°或2
2025-01-15 17:03
【摘要】中考復(fù)習(xí)時(shí)刻準(zhǔn)備著!周萬留圖形的軸對(duì)稱和中心對(duì)稱第五章第一課時(shí)由一個(gè)圖形變?yōu)榱硪粋€(gè)圖形,并使兩個(gè)圖形關(guān)于某一條直線成軸對(duì)稱.這樣的圖形變換叫做圖形的軸對(duì)稱變換.軸對(duì)稱變換性質(zhì)對(duì)稱軸__________連結(jié)兩個(gè)對(duì)稱點(diǎn)之間的線段,軸對(duì)稱變換不改變圖形的______和______垂直平分
2024-12-05 12:54
【摘要】?中心對(duì)稱的兩個(gè)圖形有什么性質(zhì)?。(1)平行四邊形的對(duì)角頂點(diǎn)關(guān)于對(duì)角線交點(diǎn)對(duì)稱。(2)平行四邊形的對(duì)邊關(guān)于對(duì)角線交點(diǎn)對(duì)稱。(3)平行四邊形是軸對(duì)稱圖形復(fù)習(xí)與引入如圖所示的兩個(gè)圖形成中心對(duì)稱,你能找到對(duì)稱中心嗎?PABDCEFGH
2025-02-10 15:18
【摘要】初中數(shù)學(xué)八年級(jí)上冊(cè)(蘇科版)思考⑴軸對(duì)稱與軸對(duì)稱圖形有怎樣的聯(lián)系與區(qū)別?⑵比照軸對(duì)稱與軸對(duì)稱圖形的關(guān)系,你認(rèn)為什么樣的圖形是中心對(duì)稱圖形?你對(duì)線段有哪些認(rèn)識(shí)?ABADBC你對(duì)平行四邊形有哪些認(rèn)識(shí)?把一個(gè)平面圖形繞某一點(diǎn)旋轉(zhuǎn)1800,如果它能夠與原來圖形重合,那么這個(gè)圖形叫做中心
2025-02-02 03:54
【摘要】第32講┃軸對(duì)稱與中心對(duì)第32講┃考點(diǎn)聚焦考點(diǎn)聚焦考點(diǎn)1軸對(duì)稱與軸對(duì)稱圖形軸對(duì)稱軸對(duì)稱圖形定義把一個(gè)圖形沿著某一條直線折疊,如果它能夠與另一個(gè)圖形____,那么就說這兩個(gè)圖形關(guān)于這條直線對(duì)稱,這條直線叫做對(duì)稱軸.折疊后重合的點(diǎn)是對(duì)應(yīng)點(diǎn),叫對(duì)稱點(diǎn)如果一個(gè)圖形沿某一直線對(duì)折后
2025-03-04 13:20
【摘要】圖片欣賞:埃舍爾作品觀察:思考:這些圖形有哪些共同的特征?旋轉(zhuǎn)一定的角度可以和自身重合五角星繞著點(diǎn)O按順時(shí)針方向旋轉(zhuǎn)72度后與初始五角星重合。正三角形繞著點(diǎn)O順時(shí)針旋轉(zhuǎn)120度后與初始正三角形重合觀察:OOOOOO把一個(gè)圖形繞著一個(gè)定點(diǎn)旋轉(zhuǎn)一個(gè)角度后,與初始
2025-06-16 12:00