【摘要】立體幾何初步復習(二)1、如圖,在底面為平行四邊形的四棱錐PABCD?中,點E是PD的中點.求證://PB平面AEC;2、如圖,在正方體ABCD-A1B1C1D1中,求證:面AB1D1∥面BDC1
2025-02-06 23:44
【摘要】立體幾何中的向量方法(1)【學習目標】1.掌握直線的方向向量及平面的法向量的概念;2.掌握利用直線的方向向量及平面的法向量解決平行、垂直、夾角等立體幾何問題.【重點難點】直線的方向向量及平面的法向量【學習過程】一、自主預習(預習教材P102~P104,找出疑惑之處)復習1:
2025-01-22 20:38
【摘要】立體幾何中的向量方法(2)【學習目標】1.掌握利用向量運算解幾何題的方法,并能解簡單的立體幾何問題;2.掌握向量運算在幾何中求兩點間距離和求空間圖形中的角度的計算方法.【重點難點】利用向量運算解幾何題【學習過程】一、自主預習(預習教材P105~P107,找出疑惑之處.復習1:已知1ab??,1
2025-01-22 17:32
【摘要】必修2立體幾何初步復習(一)一、點、直線、平面的位置關系(一)知識框圖,整體認識(二)整合知識,發(fā)展思維(1)空間點、線、面間的位置關系:公理1——判定直線是否在平面內(nèi)的依據(jù);①文字表述②圖形公理2——提供確定
2025-01-22 19:35
【摘要】1法門高中姚連省2一、復習引入用空間向量解決立體幾何問題的“三步曲”。(1)建立立體圖形與空間向量的聯(lián)系,用空間向量表示問題中涉及的點、直線、平面,把立體幾何問題轉(zhuǎn)化為向量問題;(化為向量問題)(2)通過向量運算,研究點、直線、平面之間的位置關系以及它們之間距離和夾角等問題;
2025-01-21 13:29
【摘要】空間向量的數(shù)量積(二)【學習目標】利用空間向量的數(shù)量積解決立體幾何中的一些簡單問題。【自主學習與檢測】在正方體1111ABCDABCD?中,點M是AB的中點,(1)求證;1ACDB?三、求1DB與CM所成角的余弦值。完成此題后,請你比較傳統(tǒng)證法與向量證法的優(yōu)劣。
2025-02-07 01:52
【摘要】橢圓的簡單幾何性質(zhì)(二)【學習目標】1.掌握橢圓范圍、對稱性、頂點、離心率、準線方程等幾何性質(zhì);2.能利用橢圓的幾何性質(zhì)解決相關的問題.【自主檢測】1.求直線320xy???與橢圓221164xy??的交點坐標.2.已知橢圓22149xy??,一組平行直線的斜率是32,問這組直線何時與橢圓相交?
2025-02-07 06:41
【摘要】命題【學習目標】1.理解什么是命題,會判斷一個命題的真假.2.分清命題的條件和結(jié)論,能將命題寫成“若p,則q”的形式.【自主學習】研讀教材,回答下列問題::.從命題定義中可以看出,命題具備的兩個基本條件是:
2025-01-22 23:25
【摘要】空間“角度”問題法門高中姚連省一、復習引入用空間向量解決立體幾何問題的“三步曲”。(1)建立立體圖形與空間向量的聯(lián)系,用空間向量表示問題中涉及的點、直線、平面,把立體幾何問題轉(zhuǎn)化為向量問題;(2)通過向量運算,研究點、直線、平面之間的位置關系以及它們之間距離和夾角等問題;(3)把向量的運算結(jié)果“翻譯”成相應的幾何
【摘要】l的方向向量,平面α的法向量分別是a=(3,2,1),u=(-1,2,-1),則l與α的位置關系是()A.l⊥αB.l∥αC.l與α相交但不垂直D.l∥α或l?α解析:選D.∵a·u=-3+4-1=0,∴a⊥u,
2025-02-07 06:40
【摘要】1法門高中姚連省立體幾何中的向量方法(四)----利用向量解決平行與垂直問題2一、復習1、用空間向量解決立體幾何問題的“三步曲”(1)建立立體圖形與空間向量的聯(lián)系,用空間向量表示問題中涉及的點、直線、平面,把立體幾何問題轉(zhuǎn)化為向量問題;(化為向量問題)
【摘要】l的方向向量與平面α的法向量的夾角等于120°,則直線l與平面α所成的角等于()A.120°B.60°C.30°D.以上均錯答案:CABCDA1B1C1D1中,AB=2,BC=2,DD1=3,則AC與BD1所成角的
【摘要】立體幾何初步復習(三)---------空間角(一)知識回顧,整體認識1.異面直線所成角;定義:范圍:圖形2.直線與平面所成角;定義:范圍:圖形3.二面角.定義:圖形求解步驟:作——證——指——求——答(二)應用舉例,深化鞏固△AB
2025-01-22 23:24
【摘要】1法門高中姚連省2前面,我們把平面向量推廣到空間向量向量漸漸成為重要工具立體幾何問題(研究的基本對象是點、直線、平面以及由它們組成的空間圖形)從今天開始,我們將進一步來體會向量這一工具在立體幾何中的應用.
【摘要】空間向量運算的坐標表示【學習目標】⒈掌握空間向量坐標運算的規(guī)律;,判斷兩個向量共線或垂直;【自主學習】若123(,,)aaaa?,123(,,)bbbb?,則_________??ab,_____________??ab,_____________()??