【摘要】課題:導(dǎo)數(shù)與函數(shù)的單調(diào)性、極值、最值科目:數(shù)學(xué)教學(xué)對象:高三課時(shí)第1課時(shí)提供者:段秀香單位:靜海第六中學(xué)一、教學(xué)內(nèi)容分析 現(xiàn)在中學(xué)數(shù)學(xué)新教材中,導(dǎo)數(shù)(選修2-2)處于一種特殊的地位,是高中數(shù)學(xué)知識(shí)的一個(gè)重要交匯點(diǎn),是聯(lián)系多個(gè)章節(jié)內(nèi)容以及解決相關(guān)問題的重要工具。天津高考中必有考一道解答題(如2009-2011年常規(guī)題或2012-2014年壓軸題)和一道選擇
2025-06-04 00:39
【摘要】一、選擇題(每小題只有一個(gè)選項(xiàng)是正確的,每小題5分,共60分,在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。)1.已知某函數(shù)的導(dǎo)數(shù)為y′=12(x-1),則這個(gè)函數(shù)可能是?????( )A.y=ln1-x ?B.y=ln11-xC.y=ln(1-x)????D.y=l
2024-09-05 14:27
【摘要】高二文科數(shù)學(xué)《變化率與導(dǎo)數(shù)及導(dǎo)數(shù)應(yīng)用》專練(十)一、選擇題1.設(shè)函數(shù)f(x)存在導(dǎo)數(shù)且滿足,則曲線y=f(x)在點(diǎn)(2,f(2))處的切線斜率為(?。〢.﹣1 B.﹣2 C.1 D.22.函數(shù)的圖像與x軸相交于點(diǎn)P,則曲線在點(diǎn)P處的切線的方程為()A. B. C. D.3.曲線上一動(dòng)點(diǎn)處的切線斜率的最小值為(
2024-09-15 06:40
【摘要】天津市2018屆高三數(shù)學(xué)函數(shù)單調(diào)性與最值學(xué)校:___________姓名:___________班級(jí):___________考號(hào):___________1.若是上的單調(diào)遞增函數(shù),則實(shí)數(shù)的取值范圍為()A.B.C.D.2.已知函數(shù)在區(qū)間上是增函數(shù),則的取值范圍是()A.B.C.
2025-05-12 07:09
【摘要】.章末檢測一、選擇題1.已知曲線y=x2+2x-2在點(diǎn)M處的切線與x軸平行,則點(diǎn)M的坐標(biāo)是( )A.(-1,3) B.(-1,-3)C.(-2,-3)D.(-2,3)答案 B解析 ∵f′(x)=2x+2=0,∴x=-1.f(-1)=(-1)2+2×(-1)-2=-3.∴M(-1,-3).2.函數(shù)y=x4-2x2+5的單調(diào)減區(qū)間為(
2024-09-15 00:00
【摘要】第二章第三節(jié)函數(shù)的單調(diào)性與最值一、選擇題1.下列函數(shù)中,既是偶函數(shù)又在(0,+∞)單調(diào)遞增的函數(shù)是( )A.y=x3 B.y=|x|+1C.y=-x2+1 D.y=2-|x|2.下列函數(shù)f(x)中,滿足“對任意x1,x2∈(0,+∞),當(dāng)x1f(x2)”的是( )A.f(x)=
2025-05-11 12:17
【摘要】同步練習(xí)1.若f(x)=sinα-cosx,則f′(α)等于A.sinα B.cosαC.sinα+cosα D.2sinα2.f(x)=ax3+3x2+2,若f′(-1)=4,則a的值等于A. B.C. D.3.函數(shù)y=sinx的導(dǎo)數(shù)為A.y′=2sinx+cosx B.y′=+cosxC
2025-05-12 00:40
【摘要】高中數(shù)學(xué)專題訓(xùn)練導(dǎo)數(shù)的應(yīng)用——極值與最值一、選擇題1.函數(shù)y=ax3+bx2取得極大值和極小值時(shí)的x的值分別為0和,則( )A.a(chǎn)-2b=0 B.2a-b=0C.2a+b=0D.a(chǎn)+2b=0答案 D解析 y′=3ax2+2bx,據(jù)題意,0、是方程3ax2+2bx=0的兩根∴-=, ∴a+2b=0.2.當(dāng)
2024-09-02 13:06
【摘要】函數(shù)的極值和最值【考綱要求】。.。【知識(shí)網(wǎng)絡(luò)】函數(shù)極值的定義函數(shù)極值點(diǎn)條件函數(shù)的極值求函數(shù)極值函數(shù)的極值和最值函數(shù)在閉區(qū)間上的最大值和最小值【考點(diǎn)梳理】要點(diǎn)一、函數(shù)的極值函數(shù)的極值的定義一般地,設(shè)函數(shù)在點(diǎn)及其附近有定義,(1)若對于附近的所有點(diǎn),都有,則是函數(shù)的一個(gè)極大值,記作;(2)若對附近的所有
2025-08-03 04:08
【摘要】實(shí)驗(yàn)六 多元函數(shù)的極值【實(shí)驗(yàn)?zāi)康摹?.多元函數(shù)偏導(dǎo)數(shù)的求法。2.多元函數(shù)自由極值的求法3.多元函數(shù)條件極值的求法.4.學(xué)習(xí)掌握MATLAB軟件有關(guān)的命令?!緦?shí)驗(yàn)內(nèi)容】求函數(shù)的極值點(diǎn)和極值【實(shí)驗(yàn)準(zhǔn)備】1.計(jì)算多元函數(shù)的自由極值對于多元函數(shù)的自由極值問題,根據(jù)多元函數(shù)極值的必要和充分條件,可分為以下幾個(gè)步驟:,得到駐點(diǎn),求出二階偏導(dǎo)數(shù)步
2024-09-05 02:20
【摘要】導(dǎo)數(shù)基礎(chǔ)題一1.與直線042???yx的平行的拋物線2xy?的切線方程是()A.032???yxB.032???yxC.012???yxD.012???yx2.
2025-02-26 19:39
【摘要】高二數(shù)學(xué)導(dǎo)數(shù)練習(xí)題一、選擇題()A://://( )A.(x+)′=1+B.(log2x)′=C.(3x)′=3xlog3eD.(x2cosx)′=-2xsinx3.,若,則的值等于()A. B.C.D.,有,f(1)=-1,則此函數(shù)為
2025-05-22 05:17
【摘要】高等數(shù)學(xué)練習(xí)題第二章導(dǎo)數(shù)與微分第一節(jié)導(dǎo)數(shù)概念一.填空題,則=2.若存在,=.=.,則(米),則物體在秒時(shí)的瞬時(shí)速度為5(米/秒)(,)處的切線方程為,法線方程為?或?表示在一點(diǎn)處函數(shù)極限存在、連續(xù)、可導(dǎo)、可微之間的關(guān)系,
2025-08-05 08:10
【摘要】復(fù)合函數(shù)的導(dǎo)數(shù)練習(xí)題一、選擇題=的導(dǎo)數(shù)是A.B.C.-D.-=sin3(3x+)的導(dǎo)數(shù)為(3x+)cos(3x+)(3x+)cos(3x+)(3x+)D.-9sin2(3x+)cos(3x+)=cos(sinx)的導(dǎo)數(shù)為A.-[sin(si
2025-05-12 00:18
【摘要】第三章導(dǎo)數(shù)及其應(yīng)用人教A版數(shù)學(xué)第三章導(dǎo)數(shù)及其應(yīng)用人教A版數(shù)學(xué)第三章導(dǎo)數(shù)及其應(yīng)用人教A版數(shù)學(xué)1.知識(shí)與技能結(jié)合函數(shù)的圖象,了解函數(shù)在某點(diǎn)取得極值的必要條件和充分條件.2.過程與方法會(huì)用導(dǎo)數(shù)求不超過三次的多項(xiàng)
2024-12-06 11:51