【摘要】函數(shù)的單調(diào)性與最值一、知識(shí)梳理1.增函數(shù)、減函數(shù)一般地,設(shè)函數(shù)f(x)的定義域?yàn)镮,區(qū)間D?I,如果對(duì)于任意x1,x2∈D,且x1f(x2).2.單調(diào)區(qū)間的定義若函數(shù)y=f(x)在區(qū)間D上是增函數(shù)或減函數(shù),則稱函數(shù)y=
2025-05-11 12:17
【摘要】分段函數(shù)和單調(diào)性練習(xí)題一、選擇題(每小題5分,一共12道小題,總分60分)1.下列各組函數(shù)中,f(x)與g(x)表示同一函數(shù)的是()A.f(x)=x﹣1與g(x)=B.f(x)=x與g(x)=C.f(x)=x與g(x)= D.f(x)=與g(x)=x+22.函數(shù)則的解集為()A.B.C.D.3.
2025-05-11 12:26
【摘要】1.設(shè)函數(shù)。(1)當(dāng)a=1時(shí),求的單調(diào)區(qū)間。(2)若在上的最大值為,求a的值。解:對(duì)函數(shù)求導(dǎo)得:,定義域?yàn)椋?,2)當(dāng)a=1時(shí),令當(dāng)為增區(qū)間;當(dāng)為減函數(shù)。當(dāng)有最大值,則必不為減函數(shù),且0,為單調(diào)遞增區(qū)間。最大值在右端點(diǎn)取到。。2.已知函數(shù)其中實(shí)數(shù)。(I)若a=2,求曲線在點(diǎn)處的切線方程;(II)若在x=1處取得極值,試討論的單調(diào)
2025-05-11 07:03
【摘要】第三節(jié)函數(shù)的單調(diào)性與最值基礎(chǔ)梳理:在函數(shù)y=f(x)的定義域內(nèi)的一個(gè)區(qū)間A上,如果對(duì)于任意兩個(gè)數(shù)x1,x2A,當(dāng)x1x2時(shí),都有________________,那么就說(shuō)f(x)在_______上是增加的(減少的).注意:(1)函數(shù)的單調(diào)性是在________內(nèi)
2025-01-15 01:26
【摘要】函數(shù)的單調(diào)性練習(xí)一、選擇題:1.在區(qū)間(0,+∞)上不是增函數(shù)的函數(shù)是 () A.y=2x+1 B.y=3x2+1 C.y= D.y=2x2+x+12.函數(shù)f(x)=4x2-mx+5在區(qū)間[-2,+∞]上是增函數(shù),在區(qū)間(-∞,-2)上是減函數(shù),則f(1)等于 () A.-7 B.1 C.17 D.253.函數(shù)f(x)在
2025-08-05 21:49
【摘要】課題:導(dǎo)數(shù)與函數(shù)的單調(diào)性、極值、最值科目:數(shù)學(xué)教學(xué)對(duì)象:高三課時(shí)第1課時(shí)提供者:段秀香單位:靜海第六中學(xué)一、教學(xué)內(nèi)容分析 現(xiàn)在中學(xué)數(shù)學(xué)新教材中,導(dǎo)數(shù)(選修2-2)處于一種特殊的地位,是高中數(shù)學(xué)知識(shí)的一個(gè)重要交匯點(diǎn),是聯(lián)系多個(gè)章節(jié)內(nèi)容以及解決相關(guān)問(wèn)題的重要工具。天津高考中必有考一道解答題(如2009-2011年常規(guī)題或2012-2014年壓軸題)和一道選擇
2025-06-04 00:39
【摘要】利用函數(shù)的單調(diào)性(最值)求參數(shù)的取值范圍例1.已知函數(shù)),0()(2Raxxaxxf????,若)(xf在????,2上為增函數(shù),求實(shí)數(shù)a的取值范圍.跟蹤訓(xùn)練:1.已知函數(shù)????????,2),0()(2xaxaxxf上遞增,求實(shí)數(shù)a的取值范圍.2.若函數(shù)xxm
2025-01-12 06:38
【摘要】....導(dǎo)數(shù)與單調(diào)性極值最基礎(chǔ)值習(xí)題 一.選擇題1.可導(dǎo)函數(shù)y=f(x)在某一點(diǎn)的導(dǎo)數(shù)值為0是該函數(shù)在這點(diǎn)取極值的( ?。〢.充分條件 B.必要條件C.充要條件 D.必要非充分條件2.函數(shù)y=1+3x﹣x3有( )A.極小值﹣1,極大值3 B.極小值﹣2,極
2025-05-12 00:40
【摘要】導(dǎo)數(shù)與單調(diào)性極值最基礎(chǔ)值習(xí)題 一.選擇題1.可導(dǎo)函數(shù)y=f(x)在某一點(diǎn)的導(dǎo)數(shù)值為0是該函數(shù)在這點(diǎn)取極值的( )A.充分條件 B.必要條件C.充要條件 D.必要非充分條件2.函數(shù)y=1+3x﹣x3有( ?。〢.極小值﹣1,極大值3 B.極小值﹣2,極大值3C.極小值﹣1,極大值1 D.極小值﹣2,極大值23.函數(shù)f(x)=x3+ax2﹣3x﹣9,已知f
2024-09-15 05:49
【摘要】函數(shù)單調(diào)性和奇偶性一、選擇題(每小題5分,一共12道小題,總分60分)1.命題“若都是偶數(shù),則也是偶數(shù)”的逆否命題是()A.若不是偶數(shù),則與都不是偶數(shù)B.若是偶數(shù),則與不都是偶數(shù)C.若是偶數(shù),則與都不是偶數(shù)D.若不是偶數(shù),則與不都是偶數(shù)2.下列函數(shù)是偶函數(shù)的是()A.B.C.D.3.下列函數(shù)中,在其定
2025-05-11 12:16
【摘要】函數(shù)單調(diào)性與導(dǎo)數(shù)練習(xí)題高二一部數(shù)學(xué)組劉蘇文2017年4月15日一、選擇題′(x0)=0時(shí),則f(x0)為f(x)的極大值′(x0)=0時(shí),則f(x0)為f(x)的極小值′(x0)=0時(shí),則f(x0)為f(x)的極值(x0)為函數(shù)f(x)的極值且f′(x0)存在時(shí),則有f′(x0)=0,在x=0處取得極值的函數(shù)是①y=x3②y=x2+1③
2025-08-05 22:00
【摘要】函數(shù)單調(diào)的概念?我們?cè)诤瘮?shù)的基本性質(zhì)中曾經(jīng)討論過(guò)函數(shù)的單調(diào)性問(wèn)題,在此我們?cè)俅位仡櫼幌潞瘮?shù)單調(diào)的定義。?定義設(shè)函數(shù)f(x)在區(qū)間(a,b)上有定義,如果對(duì)于區(qū)間(a,b)內(nèi)的任意兩點(diǎn)x1,x2,滿足?(1)當(dāng)x1x2時(shí),恒有f(x1)?f(x2)(或f(x1)f(x2))
2024-09-25 20:29
【摘要】函數(shù)的單調(diào)性與奇偶性一.基礎(chǔ)練習(xí):1.求下列函數(shù)的單調(diào)區(qū)間:(1)223xxy???(2)2212???xxy2.判斷下列函數(shù)奇偶性:(1)|32||32|)(????xxxf(2)2|2|1)(2????xxxf12?x(x0)
2025-01-13 23:50
【摘要】導(dǎo)數(shù)單調(diào)性、極值、最值教學(xué)目標(biāo):掌握運(yùn)用導(dǎo)數(shù)求解函數(shù)單調(diào)性的步驟與方法重點(diǎn)難點(diǎn):能夠判定極值點(diǎn),并能求解閉區(qū)間上的最值問(wèn)題利用導(dǎo)數(shù)研究函數(shù)的極值、最值:(1)求導(dǎo)數(shù);(2)解方程;(3)使不等式成立的區(qū)間就是遞增區(qū)間,使成立的區(qū)間就是遞減區(qū)間。,右側(cè)____0,那么是的極大值;如果在根附近的左側(cè)____0,右側(cè)____0,那么是的極小值典型例題:
2024-09-05 05:39
【摘要】函數(shù)的單調(diào)性一、選擇題:1.在區(qū)間(0,+∞)上不是增函數(shù)的函數(shù)是 () A.y=2x+1 B.y=3x2+1 C.y= D.y=2x2+x+12.函數(shù)f(x)=4x2-mx+5在區(qū)間[-2,+∞]上是增函數(shù),在區(qū)間(-∞,-2)上是減函數(shù),則f(1)等于 () A.-7 B.1 C.17 D.253.函數(shù)f(x)在區(qū)間
2025-08-14 22:46