freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

概率論與數(shù)理統(tǒng)計(jì)重點(diǎn)-在線瀏覽

2024-08-07 15:07本頁(yè)面
  

【正文】 , x0。記住積分公式:正態(tài)分布設(shè)隨機(jī)變量的密度函數(shù)為, ,其中、為常數(shù),則稱隨機(jī)變量服從參數(shù)為、的正態(tài)分布或高斯(Gauss)分布,記為。 的圖形是關(guān)于對(duì)稱的;2176。參數(shù)、時(shí)的正態(tài)分布稱為標(biāo)準(zhǔn)正態(tài)分布,記為,其密度函數(shù)記為,分布函數(shù)為。Φ(x)=1Φ(x)且Φ(0)=。(7)函數(shù)分布離散型已知的分布列為連續(xù)型先利用X的概率密度f(wàn)X(x)寫出Y的分布函數(shù)FY(y)=P(g(X)≤y),再利用變上下限積分的求導(dǎo)公式求出fY(y)。設(shè)=(X,Y)的所有可能取值為,且事件{=}的概率為pij,稱為=(X,Y)的分布律或稱為X和Y的聯(lián)合分布律。 分布密度f(wàn)(x,y)具有下面兩個(gè)性質(zhì):(1) f(x,y)≥0。 分布函數(shù)是一個(gè)以全平面為其定義域,以事件的概率為函數(shù)值的一個(gè)實(shí)值函數(shù)。當(dāng)y2y1時(shí),有F(x,y2) ≥F(x,y1)。連續(xù)型X的邊緣分布密度為Y的邊緣分布密度為(6)條件分布離散型在已知X=xi的條件下,Y取值的條件分布為在已知Y=yj的條件下,X取值的條件分布為連續(xù)型在已知Y=y的條件下,X的條件分布密度為;在已知X=x的條件下,Y的條件分布密度為(7)獨(dú)立性一般型F(X,Y)=FX(x)FY(y)離散型有零不獨(dú)立連續(xù)型f(x,y)=fX(x)fY(y)直接判斷,充要條件:①可分離變量②正概率密度區(qū)間為矩形二維正態(tài)分布=0隨機(jī)變量的函數(shù)若X1,X2,…Xm,Xm+1,…Xn相互獨(dú)立, h,g為連續(xù)函數(shù),則:h(X1,X2,…Xm)和g(Xm+1,…Xn)相互獨(dú)立。例如:若X與Y獨(dú)立,則:3X+1和5Y2獨(dú)立。、。(10)函數(shù)分布Z=X+Y根據(jù)定義計(jì)算:對(duì)于連續(xù)型,fZ(z)=兩個(gè)獨(dú)立的正態(tài)分布的和仍為正態(tài)分布()。, Z=max,min(X1,X2,…Xn)若相互獨(dú)立,其分布函數(shù)分別為,則Z=max,min(X1,X2,…Xn)的分布函數(shù)為:分布設(shè)n個(gè)隨機(jī)變量相互獨(dú)立,且服從標(biāo)準(zhǔn)正態(tài)分布,可以證明它們的平方和的分布密度為我們稱隨機(jī)變量W服從自由度為n的分布,記為W~,其中所謂自由度是指獨(dú)立正態(tài)隨機(jī)變量的個(gè)數(shù),它是隨機(jī)變量分布中的一個(gè)重要參數(shù)。F分布設(shè),且X與Y獨(dú)立,可以證明的概率密度函數(shù)為我們稱隨機(jī)變量F服從第一個(gè)自由度為n1,第二個(gè)自由度為n2的F分布,記為F~f(n1, n2).第四章 隨機(jī)變量的數(shù)字特征(1)一維隨機(jī)變量的數(shù)字特征離散型連續(xù)型期望期望就是平均值設(shè)X是離散型隨機(jī)變量,其分布律為P()=pk,k=1,2,…,n,(要求絕對(duì)收斂)設(shè)X是連續(xù)型隨機(jī)變量,其概率密度為f(x),(要求絕對(duì)收斂)函數(shù)的期望Y=g(X) Y=g(X)方差D(X)=E[XE(X)]2,標(biāo)準(zhǔn)差, 矩①對(duì)于正整數(shù)k,稱隨機(jī)變量X的k次冪的數(shù)學(xué)期望為X的k階原點(diǎn)矩,記為vk,即νk=E(Xk)= , k=1,2, ….②對(duì)于正整數(shù)k,稱隨機(jī)變量X與E(X)差的k次冪的數(shù)學(xué)期望為X的k階中心矩,記為,即=, k=1,2, ….①對(duì)于正整數(shù)k,稱隨機(jī)變量X的k次冪的數(shù)學(xué)期望為X的k階原點(diǎn)矩,記為vk,即νk=E(Xk)= k=1,2, ….②對(duì)于正整數(shù)k,稱隨機(jī)變量X與E(X)差的k次冪的數(shù)學(xué)期望為X的k階中心矩,記為,即=k=1,2, ….切比雪夫不等式設(shè)隨機(jī)變量X具有數(shù)學(xué)期望E(X)=μ,方差D(X)=σ2,則對(duì)于任意正數(shù)ε,有下列切比雪夫不等式切比雪夫不等式給出了在未知X的分布的情況下,對(duì)概率的一種估計(jì),它在理論上有重要意義。(3)方差的性質(zhì)(1) D(C)=0;E(C)=C(2) D(aX)=a2D(X); E(aX)=aE(X)(3) D(aX+b)= a2D(X); E(aX+b)=aE(X)+b(4) D(X)=E(X2)E2(X)(5) D(X177。 D(X177。2E[(XE(X))(YE(Y))],無(wú)條件成立。(4)常見(jiàn)分布的期望和方差期望方差01分布p二項(xiàng)分布np泊松分布幾何分布超幾何分布均勻分布指數(shù)分布正態(tài)分布n2nt分布0(n2)(5)二維隨機(jī)變量的數(shù)字特征期望函數(shù)的期望==方差協(xié)方差對(duì)于隨機(jī)變量X與Y,稱它們的二階混合中心矩為X與Y的協(xié)方差或相關(guān)矩,記為,即與記號(hào)相對(duì)應(yīng),X與Y的方差D(X)與D(Y)也可分別記為與。 ||≤1,當(dāng)||=1時(shí),稱X與Y完全相關(guān):完全相關(guān)而當(dāng)時(shí),稱X與Y不相關(guān)。③E(XY)=E(X)E(Y)。⑤D(XY)=D(X)+D(Y).協(xié)方差矩陣混合矩對(duì)于隨機(jī)變量X與Y,
點(diǎn)擊復(fù)制文檔內(nèi)容
研究報(bào)告相關(guān)推薦
文庫(kù)吧 www.dybbs8.com
備案圖鄂ICP備17016276號(hào)-1