【摘要】高三文科數(shù)學(xué)第二輪復(fù)習(xí)資料——《立體幾何》專題一、空間基本元素:直線與平面之間位置關(guān)系的小結(jié).如下圖:條件結(jié)論線線平行線面平行面面平行垂直關(guān)系線線平行如果a∥b,b∥c,那么a∥c如果a∥α,aβ,β∩α=b,那么a∥b如果α∥β,α∩γ=a,β∩γ=b,那么a∥b如果a⊥α,b⊥α,那么a∥b線面平行如果a∥b,a
2025-05-12 06:44
【摘要】俯視圖正視圖51210側(cè)視圖圖1?廣東省各地市高考數(shù)學(xué)聯(lián)考試題分類匯編第2部分:立體幾何一、選擇題:1.(廣東省珠海一中2022年2月高三第二學(xué)期第一次調(diào)研文科)如圖所示,在棱長(zhǎng)為1的正方體ABCD-A1B1C1D1中,E、F分別為棱AA1、BB1的中點(diǎn),G為棱A1B
2025-02-26 07:43
【摘要】高中課程復(fù)習(xí)專題——數(shù)學(xué)立體幾何一空間幾何體㈠空間幾何體的類型1多面體:由若干個(gè)平面多邊形圍成的幾何體。圍成多面體的各個(gè)多邊形叫做多面體的面,相鄰兩個(gè)面的公共邊叫做多面體的棱,棱與棱的公共點(diǎn)叫做多面體的頂點(diǎn)。2旋轉(zhuǎn)體:把一個(gè)平面圖形繞它所在的平面內(nèi)的一條定直線旋轉(zhuǎn)形成了封閉幾何體。其中,這條直線稱為
2025-05-22 05:14
【摘要】專題:空間角一、基礎(chǔ)梳理(1)異面直線所成的角的范圍:。(2)異面直線垂直:如果兩條異面直線所成的角是直角,則叫兩條異面直線垂直。兩條異面直線垂直,記作。(3)求異面直線所成的角的方法:(1)通過平移,在一條直線上(或空間)找一點(diǎn),過該點(diǎn)作另一(或兩條)直線的平行線;(2)找出與一條直線平行且與另一條相交的直線,那么這兩條相交直線所成的角即為所求。平移技巧
2025-06-04 07:49
【摘要】立體幾何——平行的證明【例1】如圖,四棱錐P-ABCD的底面是平行四邊形,點(diǎn)E、F分別為棱AB、PD的中點(diǎn).求證:AF∥平面PCE;(第1題圖)分析:取PC的中點(diǎn)G,連EG.,F(xiàn)G,則易證AEGF是平行四邊形【例2】如圖,已知直角梯形ABCD中,AB∥CD,AB⊥BC,AB=1,BC=2,CD=1+,過A作AE⊥CD,垂足為E,G
2025-05-13 05:42
【摘要】第一篇:立體幾何證明 1、(14分)如圖,在正方體ABCD-A1B1C1D1中,E、F為棱AD、AB的中點(diǎn).(1)求證:EF∥平面CB1D1; (2)求證:平面CAA1C1⊥平面CB1D1. A...
2024-11-12 12:11
【摘要】立體幾何綜合習(xí)題一、考點(diǎn)分析基本圖形1.棱柱——有兩個(gè)面互相平行,其余各面都是四邊形,并且每相鄰兩個(gè)四邊形的公共邊都互相平行,由這些面所圍成的幾何體叫做棱柱。①★②四棱柱底面為平行四邊形平行六面體側(cè)棱垂直于底面直平行六面體底面為矩形長(zhǎng)方體底面為正方形正四棱柱側(cè)棱與底面邊長(zhǎng)相等正方體
2025-06-04 12:18
【摘要】2009高考數(shù)學(xué)解答題專題攻略----立體幾何09高考立體幾何分析與預(yù)測(cè):立體幾何是高中數(shù)學(xué)中的重要內(nèi)容,也是高考的熱點(diǎn)內(nèi)容。該部分新增加了三視圖,對(duì)三視圖的考查應(yīng)引起格外的注意。立體幾何在高考解答題中,常以空間幾何體(柱,錐,臺(tái))為背景,考查幾何元素之間的位置關(guān)系。另外還應(yīng)注意非標(biāo)準(zhǔn)圖形的識(shí)別、三視圖的運(yùn)用、圖形的翻折、求體積時(shí)的割補(bǔ)思想等,以及把運(yùn)動(dòng)的思想引進(jìn)立體幾何。最近幾年綜合分
2025-03-04 10:22
【摘要】高一立體幾何證明專題練習(xí)一,在三棱柱ABC-A1B1C1中,E,F(xiàn),G,H分別是AB,AC,A1B1,A1C1的中點(diǎn),求證:(1)B,C,H,G四點(diǎn)共面;(2)平面EFA1∥平面BCHG.,在直三棱柱ABC-A1B1C1中,AB=AC=5,BB1=BC=6,D,E分別是AA1和B1C的中點(diǎn).(1)求證:DE∥平面ABC;(
2025-05-13 05:39
【摘要】立體幾何復(fù)習(xí)講義【基礎(chǔ)回扣】1.平面平面的基本性質(zhì):掌握三個(gè)公理及推論,會(huì)說明共點(diǎn)、共線、共面問題。(1)證明點(diǎn)共線的問題,一般轉(zhuǎn)化為證明這些點(diǎn)是某兩個(gè)平面的公共點(diǎn)(依據(jù):由點(diǎn)在線上,線在面內(nèi),推出點(diǎn)在面內(nèi)),這樣可根據(jù)公理2證明這些點(diǎn)都在這兩個(gè)平面的公共直線上。(2)證明共點(diǎn)問題,一般是先證
2025-07-25 21:19
【摘要】一、基本概念1.空間向量:在空間內(nèi),我們把具有大小和方向的量叫做向量,用有向線段表示.2.向量的模:向量的大小叫向量的長(zhǎng)度或模.記為|,特別地:?①規(guī)定長(zhǎng)度為0的向量為零向量,記作;?②模為1的向量叫做單位向量;3.相等的向量:兩個(gè)模相等且方向相同的向量稱為相等的向量.4.負(fù)向量:兩個(gè)模相等且方向相反的向量是互為負(fù)向量.如的相反向量記為-.
2025-06-04 08:18
【摘要】一輪復(fù)習(xí)之立體幾何姓名一輪復(fù)習(xí)之立體幾何姓名1.已知三棱錐中,為等腰直角三角形,,設(shè)點(diǎn)為中點(diǎn),點(diǎn)為中點(diǎn),點(diǎn)為上一點(diǎn),且.(1)證明:平面;(2)若,求直線與平面所成角的正弦值.
2024-09-03 12:16
【摘要】平面的基本性質(zhì)公理1:如果一條直線上的兩點(diǎn)在一個(gè)平面內(nèi),那么這條直線在此平面內(nèi)(教師引導(dǎo)學(xué)生閱讀教材P42前幾行相關(guān)內(nèi)容,并加以解析)符號(hào)表示為L(zhǎng)A·αA∈LB∈L=LαA∈αB∈α公理1作用:判斷直線是否在平面內(nèi)生活中,我們看到三腳架可以牢固地支撐照相機(jī)或測(cè)量用的平板儀等等……C·
2025-06-04 00:53
【摘要】如何學(xué)好立體幾何立體幾何在歷年的高考中有兩到三道小題,必有一道大題。雖然分值比重不是特別大,但是起著舉足輕重的作用。下面就如何學(xué)好立體幾何談幾點(diǎn)建議。一立足課本,夯實(shí)基礎(chǔ)直線和平面這些內(nèi)容,是立體幾何的基礎(chǔ),學(xué)好這部分的一個(gè)捷徑就是認(rèn)真學(xué)習(xí)定理的證明,尤其是一些很關(guān)鍵的定理的證明。例如:三垂線定理。定理的內(nèi)容都很簡(jiǎn)單,就是線與線,線與面,面與面之間的關(guān)系的闡述。但定理的
2024-11-05 17:14
【摘要】專題一淺析中心投影與平行投影中心投影與平行投影是畫空間幾何體的三視圖和直觀圖的基礎(chǔ),弄清楚中心投影與平行投影能使我們更好地掌握三視圖和直觀圖,平行投影下,與投影面平行的平面圖形留下的影子,與這個(gè)平面圖形的形狀和大小完全相同;而中心投影則不同.下表簡(jiǎn)單歸納了中心投影與平行投影,結(jié)合實(shí)例讓我們進(jìn)一步了解平行投影和中心投影.投影定義特征分類中心投影光由一點(diǎn)向外散射形成的投
2025-05-22 05:09