【摘要】3勾股定理的應(yīng)用,構(gòu)造三角形,碰到空間曲面上兩點間的最短距離問題,一般是化空間問題為問題來解決,它的理論依據(jù)是“兩點之間,最短”.,在圓柱的軸截面ABCD中,AB=,BC=12,動點P從點A出發(fā),沿著圓柱的側(cè)面移動到BC的中點S的最短距離為()1
2024-07-30 12:21
【摘要】八年級上冊第一章《勾股定理》復習要點知識點一:勾股定理要點:⑴.勾股定理:直角三角形兩直角邊的平方和等于斜邊的平方如果直角三角形的兩條直角邊分別為a、b,斜邊為c,那么,a+b=c,⑵.歷史文化:勾股定理在西方文獻中又稱畢達哥拉斯定理。我國古代把直角三角形中較短的直角邊稱為勾,較長的直角邊稱為股,斜邊為弦。⑶格式:a=8b=15解:由勾股定理得c=a+b
2025-06-03 23:12
【摘要】 ?勾股定理知識總結(jié)一:勾股定理 直角三角形兩直角邊a、b的平方和等于斜邊c的平方。(即:a2+b2=c2) 要點詮釋:勾股定理反映了直角三角形三邊之間的關(guān)系,是直角三角形的重要性質(zhì)之一,其主要應(yīng)用:(1)已知直角三角形的兩邊求第三邊(2)已知直角三角形的一邊與另兩邊的關(guān)系,求直角三角形的另兩邊(3)利用勾股定理可以證明線段平
2025-05-22 03:54
【摘要】勾股定理教案課題:(1)課型:新授課【學習目標】:1.了解勾股定理的發(fā)現(xiàn)過程,掌握勾股定理的內(nèi)容,會用面積法證明勾股定理。2.培養(yǎng)在實際生活中發(fā)現(xiàn)問題總結(jié)規(guī)律的意識和能力?!緦W習重點】:勾股定理的內(nèi)容及證明?!緦W習難點】:勾股定理的證明?!緦W習過程】一、課前預習1、直角△ABC的主要性質(zhì)是:∠C=90°(用幾何語言表示)(1)兩銳角之間
2025-06-04 12:28
【摘要】八年級數(shù)學北師大版·上冊第一章第一章勾股定理勾股定理勾股定理的應(yīng)用如圖所示,有一個圓柱,它的高等于12cm,底面上圓的周長等于18cm.在圓柱下底面的點A有一只螞蟻,它想吃到上底面上與點A相對的點B處的食物,沿圓柱側(cè)面爬行的最短路程是多少?(1)自己做一個圓柱,嘗試從點A到點B沿圓柱側(cè)面畫出幾條路線,你覺得哪條路線最
2024-07-30 12:11
【摘要】1(北師大版)八年級數(shù)學(上)第一章勾股定理檢測題班級________姓名___________學號_______總分_______一、填空題:(每題2分,共20分)1.若直角三角形兩直角邊之比為3∶4,斜邊的長為25cm,則這個直角三角形的面積是________________.2.在△ABC中,22nm
2024-11-07 16:29
【摘要】第一章勾股定理3勾股定理的應(yīng)用3勾股定理的應(yīng)用第一章勾股定理A知識要點分類練B規(guī)律方法綜合練C拓廣探究創(chuàng)新練1.如圖1-3-1,一只螞蟻從一個正方體紙盒的點A沿紙盒表面爬到點B,它所爬過的最短路線的痕跡(虛線)在側(cè)面展開圖中的位置是()
2024-07-31 12:52
2024-07-30 22:19
【摘要】初中數(shù)學(北師大版)八年級上冊第一章本章檢測一、選擇題(每小題3分,共30分)1.(2022河北承德興隆期末)如圖1-4-1,以Rt△ABC的三邊為邊向外作正方形,其面積分別為S1=81,S3=625,則S2=?()?圖1-4-1本章檢測答案
2025-08-02 07:22
【摘要】第一章生活中的水復習課章建生第一節(jié)至第五節(jié)第一章復習一、水的分布和循環(huán)海洋水%湖泊咸水和地下咸水%(2)各水體是相互聯(lián)系的陸地水%(1)
2025-01-10 00:58
【摘要】課題§探索勾股定理(一)學習目標1、經(jīng)歷用數(shù)格子的辦法探索勾股定理的過程,進一步發(fā)展學生的合情推力意識,主動探究的習慣,進一步體會數(shù)學與現(xiàn)實生活的緊密聯(lián)系。2、探索并理解直角三角形的三邊之間的數(shù)量關(guān)系,進一步發(fā)展學生的說理和簡單的推理的意識及能力。重點難點重點:了解勾股定理的由來,并
2025-06-03 22:14
【摘要】勾股定理知識點一:勾股定理勾股定理:.勾股數(shù):.常見勾股數(shù)
2025-05-22 03:23
【摘要】第一章勾股定理1探索勾股定理第一課時,較長的直角邊稱為,斜邊稱為.:直角三角形兩直角邊的平方和等于斜邊的.如果用a,b和c分別表示直角三角形的兩直角邊和斜邊,那么.△ABC中,∠C=90°,AB=7,BC=5,則邊AC的長的平方為()
2025-07-30 01:43
【摘要】第二課時剪四個與圖①完全相同的直角三角形,然后將它們拼成如圖②所示的圖形.(1)大正方形的邊長可以表示為,面積可以表示為.(2)大正方形由4個三角形和1個小正方形組成,面積可以表示為.對比兩種表示方法,可以得到等式:,