freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

20xx年中考數(shù)學(xué)專題復(fù)習(xí)九:中考壓軸題-在線瀏覽

2025-06-03 12:18本頁面
  

【正文】 點D,在△AN2D與△M2CO中,∴△AN2D≌△M2CO(ASA),∴N2D=OC=,即N2點的縱坐標為.∴x2﹣2x﹣=,解得x=2+或x=2﹣,∴N2(2+,),N3(2﹣,).綜上所述,符合條件的點N的坐標為(4,﹣),(2+,)或(2﹣,).【點評】本題考查的是二次函數(shù)綜合題,涉及到用待定系數(shù)法求一次函數(shù)與二次函數(shù)的解析式、平行四邊的判定與性質(zhì)、全等三角形等知識,在解答(3)時要注意進行分類討論.【同步練】(煙臺市 2015 中考 24)如圖,在平面直角坐標系中,拋物線y=ax2+bx+c與⊙M相交于A、B、C、D四點,其中A、B兩點的坐標分別為(﹣1,0),(0,﹣2),點D在x軸上且AD為⊙M的直徑.點E是⊙M與y軸的另一個交點,過劣弧上的點F作FH⊥AD于點H,且FH=(1)求點D的坐標及該拋物線的表達式;(2)若點P是x軸上的一個動點,試求出△PEF的周長最小時點P的坐標;(3)在拋物線的對稱軸上是否存在點Q,使△QCM是等腰三角形?如果存在,請直接寫出點Q的坐標;如果不存在,請說明理由.類型五:拋物線下的動態(tài)存在問題【例題5】(棗莊市 2015 中考 25)如圖,直線y=x+2與拋物線(a≠0)相交于A(,)和B(4,m),點P是線段AB上異于A、B的動點,過點P作PC⊥x軸于點D,交拋物線于點C.(1)求拋物線的解析式;(2)是否存在這樣的P點,使線段PC的長有最大值?若存在,求出這個最大值;若不存在,請說明理由;(3)求△PAC為直角三角形時點P的坐標.思路分析:此題主要考查了二次函數(shù)解析式的確定、二次函數(shù)最值的應(yīng)用以及直角三角形的判定、函數(shù)圖象交點坐標的求法等知識解題時注意聯(lián)系,對于題(1)已知B(4,m)在直線y=x+2上,很容易求得m的值,又因為已知拋物線圖象上的A、B兩點坐標,可將其代入拋物線的解析式中,通過聯(lián)立方程組即可求得待定系數(shù)的值.(2)要弄清PC的長,實際是直線AB與拋物線函數(shù)值的差.可設(shè)出P點橫坐標,根據(jù)直線AB和拋物線的解析式表示出P、C的縱坐標,進而得到關(guān)于PC與P點橫坐標的函數(shù)關(guān)系式,根據(jù)函數(shù)的性質(zhì)即可求出PC的最大值.對于題(3)當△PAC為直角三角形時,根據(jù)直角頂點的不同,需要結(jié)合圖形從三種情況進行分類討論,分別求解.解題過程:解:(1)∵B(4,m)在直線y=x+2上,∴m=4+2=6,∴B(4,6),∵A(,)、B(4,6)在拋物線上,∴,解得,∴拋物線的解析式為.(2)設(shè)動點P的坐標為(n,n+2),則C點的坐標為(,),∴PC=(+2)﹣(),=,=,∵PC>0,∴當n=時,線段PC最大且為.(3)∵△PAC為直角三角形,i)若點P為直角頂點,則∠APC=90176。因此這種情形不存在;ii)若點A為直角頂點,則∠PAC=90176。.∵y=2x2﹣8x+6=2(x﹣2)2﹣2,∴拋物線的對稱軸為直線x=2.如答圖3﹣2,作點A(,)關(guān)于對稱軸x=2的對稱點C,則點C在拋物線上,且C(,).當x=時,y=x+2=.∴P2(,).∵點P1(3,5)、P2(,)均在線段AB上,∴綜上所述,△PAC為直角三角形時,點P的坐標為(3,5)或(,). 規(guī)律總結(jié):熟練把握關(guān)于二次函數(shù)解析式的確定、二次函數(shù)最值的應(yīng)用以及直角三角形的判定、函數(shù)圖象交點坐標的求法等知識是解此類綜合性強的問題的關(guān)鍵.【同步練】(2016?(4)在x軸上方的拋物線上,是否存在點P,使得∠PBF被BA平分?若存在,請直接寫出點P的坐標;若不存在,請說明理由.類型六:拋物線與相似的綜合問題【例題6】(煙臺市 2014 中考 26)如圖,在平面直角坐標系中,Rt△ABC的頂點A,C分別在y軸,x軸上,∠ACB=90176。∵∠ACB=90176。∴∠ACO=∠CBF,∵∠AOC=∠CFB=90176?!唷鱋CD≌△FCB,∴DC=CB,∠OCD=∠FCB,∴點B、C、D在同一直線上,∴點B與點D關(guān)于直線AC對稱,∴點B關(guān)于直線AC的對稱點在拋物線上.(3)過點E作EG⊥y軸于點G,設(shè)直線AB的表達式為y=kx+b,則,解得k=﹣,∴y=﹣x+,代入拋物線的表達式﹣x+=x2﹣x﹣.解得x=2或x=﹣2,當x=﹣2時y=﹣x+=﹣(﹣2)+=,∴點E的坐標為(﹣2,),∵tan∠EDG===,∴∠EDG=30176。∴∠OAC=∠EDG,∴ED∥AC. 【點評】本題考查了待定系數(shù)法求解析式,三角形相似的判定及性質(zhì),以及對稱軸的性質(zhì)和解三角函數(shù)等知識的理解和掌握.【同步練】(201614分)如圖,直線y=﹣x+2與x軸,y軸分別交于點A,點B,兩動點D,E分別從點A,點B同時出發(fā)向點O運動(運動到點O停止),運動速度分別是1個單位長度/秒和個單位長度/秒,設(shè)運動時間為t秒,以點A為頂點的拋物線經(jīng)過點E,過點E作x軸的平行線,與拋物線的另一個交點為點G,與AB相交于點F.(1)求點A,點B的坐標;(2)用含t的代數(shù)式分別表示EF和AF的長;(3)當四邊形ADEF為菱形時,試判斷△AFG與△AGB是否相似,并說明理由.(4)是否存在t的值,使△AGF為直角三角形?若存在,求出這時拋物線的解析式;若不存在,請說明理由.【達標檢測】1. (20168分)科技館是少年兒童節(jié)假日游玩的樂園.如圖所示,圖中點的橫坐標x表示科技館從8:30開門后經(jīng)過的時間(分鐘),縱坐標y表示到達科技館的總?cè)藬?shù).圖中曲線對應(yīng)的函數(shù)解析式為y=,10:00之后來的游客較少可忽略不計.(1)請寫出圖中曲線對應(yīng)的函數(shù)解析式;(2)為保證科技館內(nèi)游客的游玩質(zhì)量,館內(nèi)人數(shù)不超過684人,后來的人在館外休息區(qū)等待.從10:30開始到12:00館內(nèi)陸續(xù)有人離館,平均每分鐘離館4人,直到館內(nèi)人數(shù)減少到624人時,館外等待的游客可全部進入.請問館外游客最多等待多少分鐘?2. (201612分)正方形OABC的邊長為4,對角線相交于點P,拋物線L經(jīng)過O、P、A三點,點E是正方形內(nèi)的拋物線上的動點.(1)建立適當?shù)钠矫嬷苯亲鴺讼担僦苯訉懗鯫、P、A三點坐標;②求拋物線L的解析式;(2)求△OAE與△OCE面積之和的最大值.3. (201612分)如圖1,已知開口向下的拋物線y1=ax2﹣2ax+1過點A(m,1),與y軸交于點C,頂點為B,將拋物線y1繞點C旋轉(zhuǎn)180176。黑龍江齊齊哈爾湖北荊州福建龍巖浙江省湖州市)如圖,已知二次函數(shù)y=﹣x2+bx+c(b,c為常數(shù))的圖象經(jīng)過點A(3,1),點C(0,4),頂點為點M,過點A作AB∥x軸,交y軸于點D,交該二次函數(shù)圖象于點B,連結(jié)BC.(1)求該二次函數(shù)的解析式及點M的坐標;(2)若將該二次函數(shù)圖象向下平移m(m>0)個單位,使平移后得到的二次函數(shù)圖象的頂點落在△ABC的內(nèi)部(不包括△ABC的邊界),求m的取值范圍;(3)點P是直線AC上的動點,若點P,點C,點M所構(gòu)成的三角形與△BCD相似,請直接寫出所有點P的坐標(直接寫出結(jié)果,不必寫解答過程).【考點】二次函數(shù)綜合題.【分析】(1)將點A、點C的坐標代入函數(shù)解析式,即可求出b、c的值,通過配方法得到點M的坐標;(2)點M是沿著對稱軸直線x=1向下平移的,可先求出直線AC的解析式,將x=1代入求出點M在向下平移時與AC、AB相交時y的值,即可得到m的取值范圍;(3)由題意分析可得∠MCP=90176?!唷螻CM=90176。則點D與點C必為相似三角形對應(yīng)點①若有△PCM∽△BDC,則有∵BD=1,CD=3,∴CP===,∵CD=DA=3,∴∠DCA=45176。CP=∴PH==把x=代入y=﹣x+4,解得y=,∴P1();同理可得,若點P在y軸左側(cè),則把x=﹣代入y=﹣x+4,解得y=∴P2();②若有△PCM∽△CDB,則有∴CP==3∴PH=3247。四川眉山)已知如圖,在平面直角坐標系xOy中,點A、B、C分別為坐標軸上上的三個點,且OA=1,OB=3,OC=4,(1)求經(jīng)過A、B、C三點的拋物線的解析式;(2)在平面直角坐標系xOy中是否存在一點P,使得以以點A、B、C、P為頂點的四邊形為菱形?若存在,請求出點P的坐標;若不存在,請說明理由;(3)若點M為該拋物線上一動點,在(2)的條件下,請求出當|PM﹣AM|的最大值時點M的坐標,并直接寫出|PM﹣AM|的最大值.【分析】(1)設(shè)拋物線的解析式為y=ax2+bx+c,把A,B,C三點坐標代入求出a,b,c的值,即可確定出所求拋物線解析式;(2)在平面直角坐標系xOy中存在一點P,使得以點A、B、C、P為頂點的四邊形為菱形,理由為:根據(jù)OA,OB,OC的長,利用勾股定理求出BC與AC的長相等,只有當BP與AC平行且相等時,四邊形ACBP為菱形,可得出BP的長,由OB的長確定出P的縱坐標,確定出P坐標,當點P在第二、三象限時,以點A、B、C、P為頂點的四邊形只能是平行四邊形,不是菱形;(3)利用待定系數(shù)法確定出直線PA解析式,當點M與點P、A不在同一直線上時,根據(jù)三角形的三邊關(guān)系|PM﹣AM|<PA,當點M與點P、A在同一直線上時,|PM﹣AM|=PA,當點M與點P、A在同一直線上時,|PM﹣AM|的值最大,即點M為直線PA與拋物線的交點,聯(lián)立直線AP與拋物線解析式,求出當|PM﹣AM|的最大值時M坐標,確定出|PM﹣AM|的最大值即可.【解答】解:(1)設(shè)拋物線的解析式為y=ax2+bx+c,∵A(1,0)、B(0,3)、C(﹣4,0),∴,解得:a=﹣,b=﹣,c=3,∴經(jīng)過A、B、C三點的拋物線的解析式為y=﹣x2﹣x+3;(2)在平面直角坐標系xOy中存在一點P,使得以點A、B、C、P為頂點的四邊形為菱形,理由為:∵OB=3,OC=4,OA=1,∴BC=AC=5,當BP平行且等于AC時,四邊形ACBP為菱形,∴BP=AC=5,且點P到x軸的距離等于OB,∴點P的坐標為(5,3),當點P在第二、三象限時,以點A、B、C、P為頂點的四邊形只能是平行四邊形,不是菱形,則當點P的坐標為(5,3)時,以點A、B、C、P為頂點的四邊形為菱形;(3)設(shè)直線PA的解析式為y=kx+b(k≠0),∵A(1,0),P(5,3),∴,解得:k=,b=﹣,∴直線PA的解析式為y=x﹣,當點M與點P、A不在同一直線上時,根據(jù)三角形的三邊關(guān)系|PM﹣AM|<PA,當點M與點P、A在同一直線上時,|PM﹣AM|=PA,∴當點M與點P、A在同一直線上時,|PM﹣AM|的值最大,即點M為直線PA與拋物線的交點,解方程組,得或,∴點M的坐標為(1,0)或(﹣5,﹣)時,|PM﹣AM|的值最大,此時|PM﹣AM|的最大值為5.【點評】此題屬于二次函數(shù)綜合題,涉及的知識有:二次函數(shù)的性質(zhì),待定系數(shù)法確定拋物線解析式、一次函數(shù)解析式,菱形的判定,以及坐標與圖形性質(zhì),熟練掌握待定系數(shù)法是解本題的關(guān)鍵..類型三:拋物線與圖形變換的綜合問題【同步練】(201612分)如圖1,在平面直角坐標系中,拋物線y=﹣x2+x+3與x軸交于A,B兩點(點A在點B左側(cè)),與y軸交于點C,拋物線的頂點為點E. (1)判斷△ABC的形狀,并說明理由; (2)經(jīng)過B,C兩點的直線交拋物線的對稱軸于點D,點P為直線BC上方拋物線上的一動點,當△PCD的面積最大時,Q從點P出發(fā),先沿適當?shù)穆窂竭\動到拋物線的對稱軸上點M處,再沿垂直于拋物線對稱軸的方向運動到y(tǒng)軸上的點N處,最后沿適當?shù)穆窂竭\動到點A處停止.當點Q的運動路徑最短時,求點N的坐標及點Q經(jīng)過的最短路徑的長; (3)如圖2,平移拋物線,使拋物線的頂點E在射線AE上移動,點E平移后的對應(yīng)點為點E′,點A的對應(yīng)點為點A′,將△AOC繞點O順時針旋轉(zhuǎn)至△A1OC1的位置,點A,C的對應(yīng)點分別為點A1,C1,且點A1恰好落在AC上,連接C1A′,C1E′,△A′C1E′是否能為等腰三角形?若能,請求出所有符合條件的點E′的坐標;若不能,請說
點擊復(fù)制文檔內(nèi)容
教學(xué)教案相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1