freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

現(xiàn)代數(shù)字信號(hào)處理課后習(xí)題解答-在線瀏覽

2025-05-13 02:46本頁(yè)面
  

【正文】 穩(wěn)隨機(jī)信號(hào)自相關(guān)函數(shù)的極限性質(zhì),即證明:①當(dāng)時(shí),;②當(dāng)時(shí),。習(xí) 題 二求證:。證明:令和不是相關(guān)的隨機(jī)信號(hào),試證:若,則和。證明:(1) (2) 設(shè)隨機(jī)信號(hào),為正常數(shù),A、B為相互獨(dú)立的隨機(jī)變量,且,.試討論的平穩(wěn)性。設(shè)隨機(jī)信號(hào),A、B是兩個(gè)相互獨(dú)立的隨機(jī)變量,且。解:(1)(2) (3)若兩個(gè)隨機(jī)信號(hào),分別為,其中,是各自平穩(wěn)、零均值相互獨(dú)立的隨機(jī)信號(hào),且具有相同的自相關(guān)函數(shù)。證明:均值為零、自相關(guān)函數(shù)與時(shí)間t無關(guān)、方差有限,故其是廣義平穩(wěn)的設(shè)隨機(jī)信號(hào),式中A、為統(tǒng)計(jì)獨(dú)立的隨機(jī)變量,在[0,]上均勻分布。解:(1)首先討論的平穩(wěn)性 與t無關(guān)故是平穩(wěn)隨機(jī)信號(hào)(2)遍歷性故不具有廣義遍歷性隨機(jī)序列,在[0,]上均勻分布,是否是廣義平穩(wěn)的?解:由已知得① 均值為與t無關(guān)常數(shù),自相關(guān)函數(shù)與t無關(guān),瞬時(shí)功率有限,故平穩(wěn)若正態(tài)隨機(jī)信號(hào)的相關(guān)函數(shù)為:①; ②試分別寫出隨機(jī)變量,的協(xié)方差矩陣。1設(shè),是相互獨(dú)立的平穩(wěn)信號(hào),它們的均值至少有一個(gè)為零,功率譜為,新的隨機(jī)信號(hào)。解:由已知得 ,獨(dú)立且平穩(wěn)平穩(wěn)1已知平穩(wěn)高斯信號(hào)的自相關(guān)函數(shù)為。解:由平穩(wěn)隨機(jī)信號(hào)自相關(guān)函數(shù)的性質(zhì)可得則一階概率密度函數(shù)對(duì)于二階概率密度函數(shù)其中為x的協(xié)方差矩陣,為均值 1令表示白噪聲序列,表示一個(gè)與不相關(guān)的序列。證明:由已知得為一與不相關(guān)的序列為一常數(shù)令即得證。試討論的遍歷性。習(xí) 題 四令x(n)是一個(gè)平穩(wěn)白噪聲過程,它的均值為零,方差為。證明:(1); (2)證明:(1)由題條件:是一平穩(wěn)白噪聲, 可知:其自相關(guān)函數(shù),經(jīng)過線性非移變系統(tǒng)得到的輸出也是一個(gè)廣義平穩(wěn)信號(hào)。設(shè)有一個(gè)級(jí)聯(lián)系統(tǒng),由兩個(gè)線性非移變時(shí)域離散系統(tǒng)按圖4-6的形式構(gòu)成,x(n)是它的輸入。試確定圖4-6的整個(gè)系統(tǒng)的單位取樣響應(yīng),并由此求出??紤]一個(gè)時(shí)域連續(xù)的隨機(jī)過程{},它有如圖4-7(a)所示的限帶功率譜。11 0 0 圖4-7 習(xí)題3用圖(1)該時(shí)域離散隨機(jī)過程的自協(xié)方差序列是什么?(2)對(duì)于上述的模擬功率譜,應(yīng)如何選擇T才會(huì)使時(shí)域離散過程為白色的?(3)如果模擬功率譜如圖4-7(b)所示,應(yīng)該如何選擇T才會(huì)使時(shí)域離散過程為白色的?(4)欲使時(shí)域離散過程為白色,應(yīng)對(duì)模擬過程和采樣周期提出哪些一般要求?解:(1)該時(shí)域離散隨機(jī)過程的自協(xié)方差序列是抽樣序列。1 0 (3)或使時(shí)域離散過程是白色的。又若等于什么?解:由第2題結(jié)論可知在圖4-8所示的反饋系統(tǒng)中,N(t)為白噪聲,,隨機(jī)信號(hào)X(t)與N(t)不相關(guān)。試證Y(t)與N(t)的互相關(guān)函數(shù)。故 解法2:因與不相關(guān),則同理故 某系統(tǒng)的傳遞函數(shù)。解:某系統(tǒng)的傳遞函數(shù)。解:兩個(gè)串聯(lián)系統(tǒng)如圖4-9所示。X(t)W(t)Y(t)圖4-9 習(xí)題7用圖解:輸入X(t)是廣義平穩(wěn)隨機(jī)信號(hào),經(jīng)串聯(lián)系統(tǒng)后輸出Y(t)。因?yàn)榕ct無關(guān),可知W(t)也是廣義平穩(wěn)隨機(jī)信號(hào)。解:代入(1)得所以與之等價(jià)的AR模型為:已知ARMA(2,1)模型為,求其前5個(gè)格林函數(shù)值及,和。
點(diǎn)擊復(fù)制文檔內(nèi)容
研究報(bào)告相關(guān)推薦
文庫(kù)吧 www.dybbs8.com
備案圖鄂ICP備17016276號(hào)-1