【摘要】一.選擇題(本大題共12個小題,每小題5分,共60分,在每小題給出的四個選項中只有一個是符合題目要求的)1、下列命題為真命題的是()A.平行于同一平面的兩條直線平行;;C.垂直于同一平面的兩條直線平行;。2、下列命題中錯誤的是:()A.如果α⊥β,那么α內(nèi)一定存在直線平行于平面β;B.如果α⊥β,那么α內(nèi)所有直線都垂直于平面β;C.
2025-08-11 19:22
【摘要】立體幾何-平行與垂直練習題1.空間四邊形SABC中,SO平面ABC,O為ABC的垂心,求證:(1)AB平面SOC(2)平面SOC平面SAB2.如圖所示,在正三棱柱ABC-A1B1C1中,E,M分別為BB1,A1C的中點,求證:(1)EM平面AA1C1C;(2)平面A1EC平面AA1C1C;3.如圖,矩形ABCD中,AD⊥平面ABE,BE=BC,F為C
2025-05-22 05:14
【摘要】空間向量練習題1.如圖所示,四棱錐P-ABCD的底面ABCD是邊長為1的菱形,∠BCD=60°,E是CD的中點,PA⊥底面ABCD,PA=2.(Ⅰ)證明:平面PBE⊥平面PAB;(Ⅱ)求平面PAD和平面PBE所成二面角(銳角)的大小.如圖所示,以A為原點,坐標分別是A(0,0,0),B(1,0,0),P(0,0,2),(Ⅰ)證明因為,
2024-08-07 22:52
【摘要】立體幾何大題練習(文科):1.如圖,在四棱錐S﹣ABCD中,底面ABCD是梯形,AB∥DC,∠ABC=90°,AD=SD,BC=CD=,側(cè)面SAD⊥底面ABCD.(1)求證:平面SBD⊥平面SAD;(2)若∠SDA=120°,且三棱錐S﹣BCD的體積為,求側(cè)面△SAB的面積.【分析】(1)由梯形ABCD,設(shè)BC=a,則CD=a,AB=2a,運用勾股定理
2025-05-12 06:44
【摘要】立體幾何試題一.選擇題(每題4分,共40分),BC//QR,則∠PQP等于()ABCD以上結(jié)論都不對,下列命題正確的個數(shù)為()(1)有兩組對邊相等的四邊形是平行四邊形,(2)四邊相等的四邊形是菱形(3)平行于同一條直線的兩條直線平行;(4)有兩邊及其夾角對應(yīng)相等的兩個三角形全等A1
2025-05-25 22:31
【摘要】立體幾何大題練習(文科):1.如圖,在四棱錐S﹣ABCD中,底面ABCD是梯形,AB∥DC,∠ABC=90°,AD=SD,BC=CD=,側(cè)面SAD⊥底面ABCD.(1)求證:平面SBD⊥平面SAD;(2)若∠SDA=120°,且三棱錐S﹣BCD的體積為,求側(cè)面△SAB的面積.【分析】(1)由梯形ABCD,設(shè)BC=a,則CD=a,AB=2a,運用
2024-09-03 12:10
【摘要】一、選擇題 1、如圖,網(wǎng)格紙上小正方形的邊長為,粗線畫出的是某 1幾何體的三視圖,則此幾何體的體積為(B) ()A6()B9()C??()D? 2、平面α截球O的球面所得圓的半徑為1, 球心O到平面α的距離為,則此球的體積為(B) 2(A)π(B)4π(C)4π
2024-09-18 23:03
【摘要】高考鏈接三視圖專題訓練[2011·安徽卷]一個空間幾何體的三視圖如圖1-1所示,則該幾何體的表面積為( )圖1-1A.48B.32+8C.48+8D.80[2011·安徽卷]C 【解析】由三視圖可知本題所給的是一個底面為等腰梯形的放倒的直四棱柱(如圖所示),所以該直四棱柱的表面積為S=2××(
2025-05-12 06:43
【摘要】單元測試九立體幾何同P279-282將原來第2、6、7、11、14、16、18、20題替換為如下各題:2、()下列命題中錯誤的是(D)(A)如果平面??平面β,那么平面?內(nèi)一定存在直線平行于平面β(B)如果平面?不垂直于平面β,那么平面?內(nèi)一定不存在直線垂直于平面β(
2025-01-22 00:42
【摘要】高三文科數(shù)學第二輪復習資料——《立體幾何》專題一、空間基本元素:直線與平面之間位置關(guān)系的小結(jié).如下圖:條件結(jié)論線線平行線面平行面面平行垂直關(guān)系線線平行如果a∥b,b∥c,那么a∥c如果a∥α,aβ,β∩α=b,那么a∥b如果α∥β,α∩γ=a,β∩γ=b,那么a∥b如果a⊥α,b⊥α,那么a∥b線面平行如果a∥b,a
【摘要】立體幾何(幾何法)—等體積轉(zhuǎn)化例1(2013年高考上海卷(理))如圖,在長方體ABCD-A1B1C1D1中,AB=2,AD=1,A1A=1,證明直線BC1平行于平面DA1C,并求直線BC1到平面D1AC的距離.【答案】因為ABCD-A1B1C1D1為長方體,故,故ABC1D1為平行四邊形,故,顯然B不在平面D1AC上,于是直線BC1平行于平面DA1C;直線BC1到平面D1
2025-08-11 19:01
【摘要】第2講空間幾何體的表面積與體積【2020年高考會這樣考】考查柱、錐、臺、球的體積和表面積,由原來的簡單公式套用漸漸變?yōu)榕c三視圖及柱、錐與球的接切問題相結(jié)合,難度有所增大.【復習指導】本講復習時,熟記棱柱、棱錐、圓柱、圓錐的表面積和體積公式,運用這些公式解決一些簡單的問題.基礎(chǔ)梳理1.柱、錐、臺和球的側(cè)面積和體積面
2024-11-03 01:40
【摘要】華夏學校資料庫1、已知四邊形是空間四邊形,分別是邊的中點(1)求證:EFGH是平行四邊形AHGFEDCB(2)若BD=,AC=2,EG=2。求異面直線AC、BD所成的角和EG、BD所成的角。2、如圖,已知空間四邊形中,,是的中點。求證:(1)平面CDE;AEDBC(2)平面平面。
【摘要】APCBOEF16.如圖,已知⊙O所在的平面,是⊙O的直徑,,C是⊙O上一點,且,與⊙O所在的平面成角,是中點.F為PB中點.(1)求證:;(2)求證:;(3)求三棱錐B-PAC的體積.17.如圖,四面體ABCD中,O、E分別是BD、BC的中點, (1)求證:平面BCD; (2)求異面直線AB與CD所成角的余弦值;
2025-03-03 11:10
【摘要】一、判定兩線平行的方法1、平行于同一直線的兩條直線互相平行2、垂直于同一平面的兩條直線互相平行3、如果一條直線和一個平面平行,經(jīng)過這條直線的平面和這個平面相交,那么這條直線就和交線平行4、如果兩個平行平面同時和第三個平面相交,那么它們的交線平行5、在同一平面內(nèi)的兩條直線,可依據(jù)平面幾何的定理證明二、判定線面平行的方法1、據(jù)定義:如果一條直線和一個平面沒有
2025-06-03 23:21