【摘要】八、圓錐曲線:(1)第一定義中要重視“括號”內的限制條件:橢圓中,與兩個定點F,F(xiàn)的距離的和等于常數(shù),且此常數(shù)一定要大于,當常數(shù)等于時,軌跡是線段FF,當常數(shù)小于時,無軌跡;雙曲線中,與兩定點F,F(xiàn)的距離的差的絕對值等于常數(shù),且此常數(shù)一定要小于|FF|,定義中的“絕對值”與<|FF|不可忽視。若=|FF|,則軌跡是以F,F(xiàn)為端點的兩條射線,若﹥|FF|,則軌跡不存在。若去掉定義中的絕
2025-08-03 19:49
【摘要】1橢圓、雙曲線、拋物線綜合習題專題學案考點一:圓錐曲線標準方程22412xy?=-1的焦點為頂點,頂點為焦點的橢圓方程為__________________22221xy??有公共焦點,離心率互為倒數(shù)的橢圓方程為__________________22135xykk????表示焦點在x軸上的橢圓,則k的取值范圍是_______
2025-02-26 16:10
【摘要】知能梳理【橢圓】一、橢圓的定義1、橢圓的第一定義:平面內一個動點到兩個定點、的距離之和等于常數(shù),這個動點的軌跡叫橢圓。這兩個定點叫橢圓的焦點,兩焦點的距離叫作橢圓的焦距。注意:若,則動點的軌跡為線段;若,則動點的軌跡無圖形。二、橢圓的方程1、橢圓的標準方程(端點為a、b,焦點為c)(1)當焦點在軸上時,橢圓的標準方程:,其中;(2)當焦點在軸上
2024-09-04 00:12
【摘要】雙曲線與拋物線復習要點山東省蒼山縣第三中學277700田丞13583915887郵箱sdtiancheng@QQ273500927雙曲線和拋物線是繼橢圓之后圓錐曲線的重要造成部分,在高考中也占有很大的比重。在復習該部分內容時,要從其定義及其幾何性質入手。一、雙曲線與拋物線的定義雙曲線的定義具有“雙向作用”。在其定義=2a(其中2a<,a>0
2025-03-04 07:53
【摘要】橢圓的定義、性質及標準方程1.橢圓的定義:⑴第一定義:平面內與兩個定點的距離之和等于常數(shù)(大于)的點的軌跡叫做橢圓。這兩個定點叫做橢圓的焦點,兩焦點的距離叫做橢圓的焦距。⑵第二定義:動點到定點的距離和它到定直線的距離之比等于常數(shù),則動點的軌跡叫做橢圓。定點是橢圓的焦點,定直線叫做橢圓的準線,常數(shù)叫做橢圓的離心率。說明:①若常數(shù)等于,則動點軌跡是線段。②若常數(shù)小于,則動點
2024-09-20 15:59
【摘要】橢圓、雙曲線、拋物線相關知識點總結一、橢圓的標準方程及其幾何性質橢圓的定義:我們把平面內與兩個定點的距離的和等于常數(shù)的點的軌跡叫做橢圓。符號語言:將定義中的常數(shù)記為,則:①.當時,點的軌跡是橢圓②.當時,點的軌跡是線段③.當時,點的軌跡不存在標準方程圖形性質焦點坐標,,焦
2025-08-11 23:31
【摘要】典型例題一例1過拋物線焦點的一條直線與它交于兩點P、Q,通過點P和拋物線頂點的直線交準線于點M,如何證明直線MQ平行于拋物線的對稱軸?解:思路一:求出M、Q的縱坐標并進行比較,如果相等,則MQ//x軸,為此,將方程聯(lián)立,解出直線OP的方程為即令,得M點縱坐標得證.由此可見,按這一思路去證,運算較為繁瑣.思路二:利用命題“如果過拋物線的焦點的一條直線和這條拋物線
2025-05-12 02:27
【摘要】1.【2017課標1,理10】已知F為拋物線C:y2=4x的焦點,過F作兩條互相垂直的直線l1,l2,直線l1與C交于A、B兩點,直線l2與C交于D、E兩點,則|AB|+|DE|的最小值為A.16B.14C.12D.10【答案】A2.【2017課標II,理9】若雙曲線C:221xya
2025-01-29 00:16
【摘要】......《拋物線》典型例題12例典型例題一例1指出拋物線的焦點坐標、準線方程.(1)(2)分析:(1)先根據(jù)拋物線方程確定拋物線是四種中哪一種,求出p,再寫出焦點坐標和準線方程.(2)先把方程化為標準方程形式,
2025-08-11 21:23
【摘要】專題五第二講橢圓、雙曲線、拋物線一、選擇題1.(2011·安徽高考)雙曲線2x2-y2=8的實軸長是( )A.2 B.2C.4 D.4解析:雙曲線方程可變?yōu)椋?,所以a2=4,a=2,2a=4.答案:C2.過橢圓+=1(a>b>0)的左焦點F1作x軸的垂線交橢圓于點P,F(xiàn)2為右焦點,若∠F1PF2=60°
2025-03-03 18:39
【摘要】范文范例指導參考《拋物線》典型例題12例典型例題一例1指出拋物線的焦點坐標、準線方程.(1)(2)分析:(1)先根據(jù)拋物線方程確定拋物線是四種中哪一種,求出p,再寫出焦點坐標和準線方程.(2)先把方程化為標準方程形式,再對a進行討論,確定是哪一種后,求p及焦點坐標與準線方程.解:(1),∴焦點坐標是(0,1),準線方程是:(
【摘要】......《拋物線》典型例題12例典型例題一例1指出拋物線的焦點坐標、準線方程.(1)(2)分析:(1)先根據(jù)拋物線方程確定拋物線是四種中哪一種,求出p,再寫出焦點坐標和準線方程.(2)先把方程化為標準方程形式,再對a進行討論,確
【摘要】佛山學習前線教育培訓中心拋物線的定義及性質一、拋物線的定義及標準方程拋物線的定義:平面內與一個定點和一條定直線的距離相等的點的軌跡叫做拋物線。定點叫做拋物線的焦點,定直線叫做拋物線的準線。標準方程()()()()圖形焦點
2025-08-11 21:19
【摘要】......第3講成績好,信心足高一數(shù)學科講義拋物線溫故知新X>0,恒等于0X≤0,無意義知識點核心:拋物線1.定義:把平面內與一個定點和一條定直線l(l不經(jīng)過)距離相等的