【摘要】1.在同圓或等圓中,如果兩個圓心角、兩條弧、或中有一組是相等的,那么,所對應(yīng)的其余各組量都分別相等。2.在⊙O中的兩條弦AB和CD,ABCD,AB和CD的弦心距分別為OM和ON,則OM__________ON。3.已知:如圖,AB=AC,D為弧AB的中點,G為弧AC中點,求證:DE=FG。4.AB、CD是⊙O內(nèi)兩條弦,且
2025-05-12 00:01
【摘要】圓周角與圓心角(2)7一、計算題:1、直角三角形的斜邊長是17,斜邊上的高為,①求三角形外接圓的半徑;②求各銳角的正切值.2、如圖,在⊙O中,F(xiàn)、G是直徑AB上的兩點,C、D、E是半圓上的點,如果弧AC的度數(shù)為60°,弧BE的度數(shù)為20°,且∠CFA=∠DFB,∠DGA=∠EGB.求:∠FDG的大小
2025-05-12 00:00
【摘要】圓周角和圓心角的關(guān)系(1)圓周角定理1、圓心角的定義?2、在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等頂點在圓心的角為圓心角一、舊知回顧:當圓心角的頂點發(fā)生變化時,這個角的位置有哪幾種情況?圓周角:像(圖二)這樣的角∠BAC我們稱為圓周角.OBC二、探索新知:
2024-09-02 05:53
【摘要】第28章圓第三節(jié)圓周角定理岷江東路學校王萍請你說一說:?答:頂點在圓心的角叫圓心角..OBC1.當球員在B,D,E處射門時,他所處的位置對球門AC分別形成三個張角∠ABC,∠ADC,∠AEC.BACDE生活實
2025-01-24 01:34
【摘要】民樂縣第二中學王愛萍回顧與思考AOBN100o,1、如圖在⊙O中,∠AOB=100o,則AB的度數(shù)為______ANB的度數(shù)為______?!?60o在射門游戲中,球員射中球門的難易與他所處的位
2025-02-09 16:28
【摘要】......ê1.()如圖,線段AB是⊙O的直徑,弦CD丄AB,∠CAB=20°,則∠AOD等于( ?。〢. 160° B.150° C.140° D. 120°考點:
2025-08-06 01:55
【摘要】ê1.()如圖,線段AB是⊙O的直徑,弦CD丄AB,∠CAB=20°,則∠AOD等于( ?。〢. 160° B.150° C.140° D. 120°考點: 圓周角定理;垂徑定理.菁優(yōu)網(wǎng)版權(quán)所有專題: 圓.分析: 利用垂徑定理得出=,進而求出∠BOD=40°,再利用鄰補角的性質(zhì)得出答案.解答: 解:
2025-08-06 00:17
【摘要】圓周角和圓心角的關(guān)系練習一、填空題:,等邊三角形ABC的三個頂點都在⊙O上,D是上任一點(不與A、C重合),則∠(1)(2)(3),四邊形ABCD的四個頂點都在⊙O上,且AD∥BC,對角線AC與BC相交于點E,那么圖中有_________對全等三角形;________對相似比不等于1的相似三角
2025-05-11 04:37
【摘要】OABC圓周角和圓心角的關(guān)系頂點在圓心的角叫圓心角.,如果兩個圓心角、兩條弧、兩條弦中有一組量相等,那么它們所對應(yīng)的其余各組量都分別相等。.OBC憶一憶若圓心角的頂點位置發(fā)生改變,可能出現(xiàn)哪些情形?·····想一想在射門游
2024-09-11 17:24
【摘要】圓周角和圓心角的關(guān)系教學設(shè)計 教學主題圓周角和圓心角的關(guān)系第一課時一、教材分析本節(jié)是北師大版九年級下冊第三章第4節(jié)《圓周角與圓心角的關(guān)系》第1課時的內(nèi)容,本課是在學生學習了圓的圓心,半徑,直徑,弦,弧,圓心角等概念以及圓的對稱性的基礎(chǔ)上,用推理論證的方法研究圓周角與圓心角關(guān)系。它在與圓有關(guān)推理、論證和計算中應(yīng)用廣泛,是本章重點內(nèi)容之一。另外通過對圓周角的學習,
2024-08-28 01:05
【摘要】初中數(shù)學資源網(wǎng)華師大九年級數(shù)學(下)第23章圓.圓周角和圓心角的關(guān)系-圓周角定理初中數(shù)學資源網(wǎng)探究活動:有關(guān)圓周角的度數(shù)1.探究半圓或直徑所對的圓周角等于多少度?2.90°的圓周角所對的弦是否是直徑?線段AB是⊙O的直徑,點C是⊙O上任
2025-01-09 19:12
【摘要】§圓心角和圓周角一、課題§圓心角和圓周角二、教學目標探索圓心角的性質(zhì)的過程三、教學重點和難點重點:經(jīng)歷探索圓心角性質(zhì)的過程.難點:圓心角性質(zhì)的應(yīng)用.四、教學手段現(xiàn)代課堂教學手段]五、教學方法啟發(fā)式教學六、教學過程設(shè)計(一)、新授
2025-02-11 08:46
【摘要】圓周角和圓心角的關(guān)系(1);;、歸納等數(shù)學思想方法.在射門游戲中(如圖),球員射中球門的難易程度與他所處的位置B對球門AC的張角(∠ABC)有關(guān).如圖所示,當球員在B,D,E處射門時,他所處的位置對球門AC分別成三個張角∠ABC,∠ADC,∠AEC這三個角的大小,有什么關(guān)系?
2025-03-07 17:37
【摘要】第三章圓3.圓周角和圓心角的關(guān)系(二)廣東省江門市新會華僑中學李小玲一、學生知識狀況分析學生的知識技能基礎(chǔ):學生在上一節(jié)的內(nèi)容中已掌握了圓心角的定義及圓心角的性質(zhì)。掌握了在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦中有一組量相等,那么它們所對應(yīng)的其余各組量都分別相等。在上一課時中,了解了同弧所對的圓周角和圓心角之間的關(guān)
2025-01-24 05:22
【摘要】圓周角和圓心角的關(guān)系(1)圓周角定理一、舊知回放:?.OBC答:相等.答:頂點在圓心的角叫圓心角.弧的度數(shù)的關(guān)系?23、(05年茂名)下列命題是真命題的是()1)垂直弦的直徑平分這條弦2)相等的圓心角所對的弧相等3)圓既是軸對稱圖形,還是中心對稱圖形A
2025-01-12 02:59