【摘要】幾何證明題解題技巧息縣五中敖勇【知識(shí)精讀】1.幾何證明是平面幾何中的一個(gè)重要問題,它對(duì)培養(yǎng)學(xué)生邏輯思維能力有著很大作用。幾何證明有兩種基本類型:一是平面圖形的數(shù)量關(guān)系;二是有關(guān)平面圖形的位置關(guān)系。這兩類問題常常可以相互轉(zhuǎn)化,如證明平行關(guān)系可轉(zhuǎn)化為證明角等或角互補(bǔ)的問題。2.掌握分析、證明幾何問題的常用方法:(1)綜合法(由因?qū)Ч?,從已知條件出發(fā),通過
2025-05-11 12:13
【摘要】空間向量與立體幾何解答題精選1已知四棱錐的底面為直角梯形,,底面,且,,是的中點(diǎn)(Ⅰ)證明:面面;(Ⅱ)求與所成的角;(Ⅲ)求面與面所成二面角的大小證明:以為坐標(biāo)原點(diǎn)長為單位長度,如圖建立空間直角坐標(biāo)系,則各點(diǎn)坐標(biāo)為(Ⅰ)證明:因由題設(shè)知,且與是平面內(nèi)的兩條相交直線,由此得面又在面上,故面⊥面(Ⅱ)解:因(Ⅲ)解:在上取一點(diǎn)
2024-08-03 04:04
【摘要】《立體幾何》解答題1.(2008年江蘇卷)如圖,在四面體ABCD中,CB=CD,AD⊥BD,點(diǎn)E,F分別是AB,BD的中點(diǎn).求證:(Ⅰ)直線EF∥平面ACD;(Ⅱ)平面EFC⊥平面BCD.2.(2009年江蘇卷)如圖,在直三棱柱ABC-A1B1C1中,E、F分別是A1B、A1C的中點(diǎn),點(diǎn)D在B1C1上,A1D⊥B1C求證:(Ⅰ)EF∥平面ABC;
2024-09-15 08:12
【摘要】新課標(biāo)立體幾何解析幾何常考題匯總1、已知四邊形是空間四邊形,分別是邊的中點(diǎn)(1)求證:EFGH是平行四邊形AHGFEDCB(2)若BD=,AC=2,EG=2。求異面直線AC、BD所成的角和EG、BD所成的角。證明:在中,∵分別是的中點(diǎn)∴同理,∴∴四邊形是平行四邊形。(2)90°30°
2024-09-02 11:22
【摘要】初中幾何證明技巧及經(jīng)典試題證明兩線段相等1.兩全等三角形中對(duì)應(yīng)邊相等。。。。。。。。*(或等圓)中等弧所對(duì)的弦或與圓心等距的兩弦或等圓心角、圓周角所對(duì)的弦相等。*。(或兩后項(xiàng))相等的比例式中的兩后項(xiàng)(或兩前項(xiàng))相等。*(外)公切線的長相等。。證明兩個(gè)角相等。。,底邊上的中線(或高)平分
2025-05-11 12:33
【摘要】解析幾何大題的解題技巧(只包括橢圓和拋物線)。一、設(shè)點(diǎn)或直線做題一般都需要設(shè)點(diǎn)的坐標(biāo)或直線方程,其中點(diǎn)或直線的設(shè)法有很多種。直線與曲線的兩個(gè)交點(diǎn)一般可以設(shè)為(x1,y1),(x2,y2),等。對(duì)于橢圓上的唯一的動(dòng),還可以設(shè)為,在拋物線上的點(diǎn),也可以設(shè)為。還要注意的是,很多點(diǎn)的坐標(biāo)都是設(shè)而不求的。對(duì)于一條直線,如果過定點(diǎn)(x0,y0)并且不與y軸平行,可以設(shè)點(diǎn)斜式y(tǒng)-y0=k
2024-09-19 15:40
【摘要】 知識(shí)點(diǎn):二面角的求法一、思想方法求二面角的大小,是立體幾何計(jì)算與運(yùn)用中的一個(gè)重點(diǎn)和難點(diǎn).直接法的核心是作(或找)出二面角的平面角,間接法可利用投影、異面直線、空間向量等。常用的方法有以下幾種:方法一(定義法)即從二面角棱上一點(diǎn)在兩個(gè)面內(nèi)分別引棱的垂線如圖1。方法二(三垂線法)在二面角的一
2025-05-12 06:41
【摘要】高三數(shù)學(xué)專項(xiàng)訓(xùn)練:立體幾何解答題(文科)(一)1.(本題滿分12分)如圖,三棱錐A—BPC中,AP⊥PC,AC⊥BC,M為AB中點(diǎn),D為PB中點(diǎn),且△PMB為正三角形.(Ⅰ)求證:DM//平面APC;(Ⅱ)求證:平面ABC⊥平面APC;(Ⅲ)若BC=4,AB=20,求三棱錐D—BCM的體積.2.如圖1,在四棱錐中,底面
2025-05-22 05:02
【摘要】立體幾何大題的答題規(guī)范與技巧一、對(duì)于空間中的定理與判定,除公理外都要明確寫出條件,才有結(jié)論。需要多個(gè)條件時(shí),要逐個(gè)寫出。對(duì)于平面幾何中的結(jié)論,要求寫出完整的條件,可以省略部分證明過程。二、一般地,有多個(gè)小題時(shí),前幾小題應(yīng)該用幾何法,可以節(jié)省時(shí)間。最后一小題若幾何法較復(fù)雜,可以用坐標(biāo)法。三、建坐標(biāo)系的要求:使更多的點(diǎn)在坐標(biāo)軸上,坐標(biāo)系最好在幾何體的內(nèi)部。四、采用
2025-05-27 05:51
【摘要】課時(shí)目標(biāo):1、了解空間動(dòng)點(diǎn)集合的類型2、探索“動(dòng)點(diǎn)問題”的解題思路問題一:動(dòng)點(diǎn)P滿足如下條件時(shí)圓橢圓雙曲線拋物線直線球面平面內(nèi)到定點(diǎn)距離等于定長平面內(nèi)到兩定點(diǎn)距離之和為定值(大于定點(diǎn)間的距離)平面內(nèi)到兩定點(diǎn)距離之差的絕對(duì)值為定值(小于定點(diǎn)間的距離)
2024-09-15 10:16
【摘要】第一篇:立體幾何證明 1、(14分)如圖,在正方體ABCD-A1B1C1D1中,E、F為棱AD、AB的中點(diǎn).(1)求證:EF∥平面CB1D1; (2)求證:平面CAA1C1⊥平面CB1D1. A...
2024-11-12 12:11
【摘要】立體幾何復(fù)習(xí)講義【基礎(chǔ)回扣】1.平面平面的基本性質(zhì):掌握三個(gè)公理及推論,會(huì)說明共點(diǎn)、共線、共面問題。(1)證明點(diǎn)共線的問題,一般轉(zhuǎn)化為證明這些點(diǎn)是某兩個(gè)平面的公共點(diǎn)(依據(jù):由點(diǎn)在線上,線在面內(nèi),推出點(diǎn)在面內(nèi)),這樣可根據(jù)公理2證明這些點(diǎn)都在這兩個(gè)平面的公共直線上。(2)證明共點(diǎn)問題,一般是先證
2025-07-25 21:19
【摘要】一、基本概念1.空間向量:在空間內(nèi),我們把具有大小和方向的量叫做向量,用有向線段表示.2.向量的模:向量的大小叫向量的長度或模.記為|,特別地:?①規(guī)定長度為0的向量為零向量,記作;?②模為1的向量叫做單位向量;3.相等的向量:兩個(gè)模相等且方向相同的向量稱為相等的向量.4.負(fù)向量:兩個(gè)模相等且方向相反的向量是互為負(fù)向量.如的相反向量記為-.
2025-06-04 08:18
【摘要】一輪復(fù)習(xí)之立體幾何姓名一輪復(fù)習(xí)之立體幾何姓名1.已知三棱錐中,為等腰直角三角形,,設(shè)點(diǎn)為中點(diǎn),點(diǎn)為中點(diǎn),點(diǎn)為上一點(diǎn),且.(1)證明:平面;(2)若,求直線與平面所成角的正弦值.
2024-09-03 12:16
【摘要】1.[2007年普通高等學(xué)校統(tǒng)一考試(海南、寧夏卷)數(shù)學(xué)文科第8題,理科第8題]20 20 正視圖20 側(cè)視圖101020 俯視圖已知某個(gè)幾何體的三視圖如下,根據(jù)圖中標(biāo)出的尺寸(單位:cm),可得這個(gè)幾何體的體積是( ?。粒? B.C. D.2.[2008年普通高等學(xué)校招生全國統(tǒng)一考試(山東
2025-07-25 22:04