【摘要】平面幾何一題多變在完成一個數(shù)學(xué)題的解答時,有必要對該題的內(nèi)容、形式、條件、結(jié)論,做進一步的探討,以真正掌握該題所反映的問題的實質(zhì)。如果能對一個普通的數(shù)學(xué)題進行一題多變,從變中總結(jié)解題方法;從變中發(fā)現(xiàn)解題規(guī)律,從變中發(fā)現(xiàn)“不變”,必將使人受益匪淺?!耙活}多變”的常用方法有:1、變換命題的條件與結(jié)論;2、保留條件,深化結(jié)論;3、減弱條件,加強結(jié)論;4、探討命題的推廣;
2024-09-15 03:22
【摘要】平面幾何習(xí)題大全下面的平面幾何習(xí)題均是我兩年來收集的,屬競賽范圍。共分為五種類型,1,幾何計算;2,幾何證明;3,共點線與共線點;4,幾何不等式;5,經(jīng)典幾何。幾何計算-1命題設(shè)點D是Rt△ABC斜邊AB上的一點,DE⊥BC于點E,DF⊥AC于點F。若AF=15,BE=10,則四邊形DECF的面積是多少?解:設(shè)DF=CE=x,DE=CF=y.∵Rt△BED∽Rt△D
2025-05-12 01:21
【摘要】平面幾何中的定值問題開場白:同學(xué)們,動態(tài)幾何類問題是近幾年中考命題的熱點,題目靈活、多變,能夠全面考查同學(xué)們的綜合分析和解決問題的能力。這類問題中就有一類是定值問題,下面我們來看幾道題:【問題1】已知一等腰直角三角形的兩直角邊AB=AC=1,P是斜邊BC上的一動點,過P作PE⊥AB于E,PF⊥AC于F,則PE+PF=。方法1:特殊值法:把P點放在特殊的B點或C
2025-05-11 12:35
【摘要】初中平面幾何145個知識點幾何要想取得好成績,幾何公式一定要爛熟于胸。幾何公式是做好幾何題的根基,因此同學(xué)們一定要在幾何公式上多下功夫。線1過兩點有且只有一條直線2兩點之間線段最短3同角或等角的補角相等4同角或等角的余角相等5過一點有且只有一條直線和已知直線垂直6直線外一點與直線上各點連接的所有線段中,垂線段最短7平行公
2025-08-05 06:56
【摘要】平面幾何知識點匯總(一)知識點一相交線和平行線對頂角的性質(zhì):對頂角相等。:性質(zhì)1:過一點有且只有一條直線與已知直線垂直。性質(zhì)2:連接直線外一點與直線上各點的所有線段中,垂線段最短。:經(jīng)過直線外一點有且只有一條直線與已知直線平行。平行公理的推論:如果兩條直線都與第三條直線平行,那么這兩條直線也互相平行。:性質(zhì)1:兩直線平行,同位角相等。性質(zhì)2:兩直線平
2025-08-05 06:09
2025-08-05 07:29
【摘要】1、平面圖形的分類及概念2、類別概念圖示線直線:沒有端點、它是無限長的。線段:有兩個端點、它的長度是有限的。射線:有一個端點,它的長度是無限的?;【€:圓上A、B兩點間的部分叫做弧。角(由一點引出的兩條射線所圍成的圖形)銳角:大于0°,小于90°的角。鈍角:大于90°,小于180
2025-05-11 03:16
【摘要】習(xí)題1如圖,P為等邊△ABC內(nèi)一點,∠APB=113°,∠APC=123°,試說明:以AP、BP、CP為邊長可以構(gòu)成一個三角形,并確定所構(gòu)成三角形的各內(nèi)角的度數(shù).解:將△APC繞點A順時針旋轉(zhuǎn)60°得△AQB,則△AQB≌△APC∴BQ=CP,AQ=AP,∵∠1+∠3=60°,∴△APQ是等邊三角形,∴QP=AP,∴△QBP就是
2024-09-15 04:08
【摘要】高中平面解析幾何知識點總結(jié)1.直線的傾斜角與斜率:(1)直線的傾斜角:在平面直角坐標(biāo)系中,對于一條與軸相交的直線,如果把軸繞著交點按逆時針方向旋轉(zhuǎn)到和直線重合時所轉(zhuǎn)的最小正角記為叫做直線的傾斜角.傾斜角,斜率不存在.(2)直線的斜率:.兩點坐標(biāo)為、.2.直線方程的五種形式:(1)點斜式:(直線過點,且斜率為).注:當(dāng)直線斜率不存在時,不能用點斜式表示,此時方
2024-08-07 16:50
【摘要】經(jīng)典難題(一)1、已知:如圖,O是半圓的圓心,C、E是圓上的兩點,CD⊥AB,EF⊥AB,EG⊥CO.求證:CD=GF.AFGCEBOD2、已知:如圖,P是正方形ABCD內(nèi)一點,∠PAD=∠PDA=150.APCDB求證:△PBC是正三角形.D2C2
【摘要】梅涅勞斯定理托勒密定理引入塞瓦定理課外思考平面幾何──平面幾何的幾個重要定理平面幾何是培養(yǎng)嚴(yán)密推理能力的很好數(shù)學(xué)分支,且因其證法多種多樣:除了幾何證法外,還有三角函數(shù)法、解析法、復(fù)數(shù)法、向量法等許多證法,這方面的問題受到各種競賽的青睞,現(xiàn)在每一屆的聯(lián)賽的第二試都有一道幾何題.平面幾何的知識競賽要求:三角形的邊
2024-09-04 15:22
【摘要】一、選擇題1.(重慶市2002年4分)一居民小區(qū)有一正多邊形的活動場。為迎接“AAPP”會議在重慶的召開,小區(qū)管委會決定在這個多邊形的每個頂點處修建一個半徑為2m的扇形花臺,花臺都以多邊形的頂點為圓心,以多邊形的內(nèi)角為圓心角,花臺占地面積共為12。若每個花臺的造價為400元,則建造這些花臺共需資金【】A2400元B2800元C3200元
2024-08-05 05:50
【摘要】01凸四邊形ABCD的對角線交于點M,點P、Q分別是△AMD和△CMB重心,R、S分別是△DMC和△MAB的垂心.求證PQ⊥RS.證:過A、C分別作BD的平行線,過B、D分別作AC的平行線.這四條直線分別相交于X、W、Y、Z.則四邊形XWYZ為平行四邊形,且XW∥AC∥XZ.則四邊形XAMD、MBYC皆為平行四邊
【摘要】如果代數(shù)與幾何各自分開發(fā)展,那它進步將十分緩慢,而且應(yīng)用范圍也很有限。但若兩者互相結(jié)合而共同發(fā)展,則就會相互加強,并以快速的步伐向著完美化的方向猛進?!窭嗜?34現(xiàn)實世界中到處有美妙的曲線,……這些曲線和方程息
2025-02-23 16:36
2024-09-15 19:18