【摘要】第1頁版權(quán)所有不得復(fù)制立體幾何中的數(shù)量問題二.重點(diǎn)、難點(diǎn):1.角度(1)兩條異面直線所成角]2,0(?(2)直線與平面所成角]2,0[?(3)二面角],0[?2.距離(1)作垂線(2)體積轉(zhuǎn)化【典型例題】[例1]PA、PB
2024-10-10 15:14
【摘要】·1·2020高考數(shù)學(xué)一輪復(fù)習(xí)單元練習(xí)--框圖I卷一、選擇題1.如圖所示是“集合”的知識結(jié)構(gòu)圖,如果要加入“子集”,則應(yīng)放在()A.“集合的概念”的下位B.“集合的表示”的下位C.“基本關(guān)系”的下位D.“基本運(yùn)算”的下位【答案】C2.下列判斷中不正確的是
2024-10-22 20:10
【摘要】立體幾何中的數(shù)量問題二.重點(diǎn)、難點(diǎn):1.角度(1)兩條異面直線所成角(2)直線與平面所成角(3)二面角2.距離(1)作垂線(2)體積轉(zhuǎn)化【典型例題】[例1]PA、PB、PC兩兩垂直,與PA、PB所成角為45°,60°,求與PC所成角。解:構(gòu)造長方體[例2]正四棱錐S—A
2024-07-18 23:44
【摘要】立體幾何中的向量方法1.(2012年高考(重慶理))設(shè)四面體的六條棱的長分別為1,1,1,1,和,且長為的棱與長為的棱異面,則的取值范圍是 ( ?。〢. B. C. D.[解析]以O(shè)為原點(diǎn),分別以O(shè)B、OC、OA所在直線為x、y、z軸,則,A,2.(2012年高考(陜西理))如圖,在空間直角坐標(biāo)系中有直三棱柱,,則直線與直線夾角的余弦值為 ( )A.
2025-06-04 13:06
【摘要】1.(2009北京卷)(本小題共14分)如圖,四棱錐的底面是正方形,,點(diǎn)E在棱PB上.(Ⅰ)求證:平面;(Ⅱ)當(dāng)且E為PB的中點(diǎn)時,求AE與平面PDB所成的角的大小.解:如圖,以D為原點(diǎn)建立空間直角坐標(biāo)系,設(shè)則,(Ⅰ)∵,∴,∴AC⊥DP,AC⊥DB,∴AC⊥平面PDB,∴平面.(Ⅱ)當(dāng)且E為PB的中點(diǎn)時,,
2024-09-15 10:17
【摘要】·1·2020高考數(shù)學(xué)一輪復(fù)習(xí)單元練習(xí)--直線與方程I卷一、選擇題1.與直線3450xy???關(guān)于x軸對稱的直線方程為()A.3450xy???B.3450xy???C.3450xy???D.3450xy???
【摘要】第6講空間向量及其運(yùn)算【2022年高考會這樣考】1.考查空間向量的線性運(yùn)算及其數(shù)量積.2.利用向量的數(shù)量積判斷向量的關(guān)系與垂直.3.考查空間向量基本定理及其意義.【復(fù)習(xí)指導(dǎo)】空間向量的運(yùn)算類似于平面向量的運(yùn)算,復(fù)習(xí)時又對比論證,重點(diǎn)掌握空間向量共線與垂直的條件,及空間向量基本定理的應(yīng)用.基礎(chǔ)梳理
2025-02-25 13:47
【摘要】一、復(fù)習(xí)目標(biāo):1、理解直線的方向向量與平面的法向量并會求直線的方向向量與平面的法向量。2、理解和掌握向量共線與共面的判斷方法。3、用向量法會熟練判斷和證明線面平行與垂直。立體幾何中的向量方法(一)第十三章《空間向量與立體幾何》二、重難點(diǎn):概念與方法的運(yùn)用三、教學(xué)方法:探析歸納,講練結(jié)合。四、教學(xué)過程(一)、
2025-01-15 18:10
2025-01-12 08:06
【摘要】向量代數(shù)空間解析幾何定義:既有大小又有方向的量稱為向量.相等向量、負(fù)向量、向徑.零向量、向量的模單位向量、向量代數(shù)(2)向量的分解式:},,{zyxaaaa??.,,,,軸上的投影分別為向量在其中zyxaaazyxkajaiaazyx??????
2024-11-05 17:17
【摘要】目錄退出第八章立體幾何目錄退出第1講空間幾何體的結(jié)構(gòu)、三視圖和直觀圖目錄退出考綱展示考綱解讀1.認(rèn)識柱、錐、臺、球及其簡單組合體的結(jié)構(gòu)特征,并能運(yùn)用這些特征描述現(xiàn)實(shí)生活中簡單物體的結(jié)構(gòu).2.能畫出簡單空間圖形(長方體、球、圓柱、圓錐、棱柱等的簡易組合)的三視
2025-02-25 13:52
【摘要】輔導(dǎo)科目:數(shù)學(xué)授課教師:全國章年級:高二上課時間:教材版本:人教版總課時:已上課時:課時學(xué)生簽名:課題名稱教學(xué)目標(biāo)重點(diǎn)、難點(diǎn)、考點(diǎn)教學(xué)步驟及內(nèi)容空間向量與立體幾何一、空間直角坐標(biāo)系的建立及點(diǎn)的坐標(biāo)表示空間直
2025-06-04 07:58
【摘要】空間向量在立體幾何中的應(yīng)用5前段時間我們研究了用空間向量求角(包括線線角、線面角和面面角)、求距離(包括線線距離、點(diǎn)面距離、線面距離和面面距離)今天我來研究如何利用空間向量來解決立體幾何中的有關(guān)證明及計(jì)算問題。一、空間向量的運(yùn)算及其坐標(biāo)運(yùn)算的掌握二、立體
2025-02-25 14:05
【摘要】空間向量與立體幾何典型例題一、選擇題:1.(2022全國Ⅰ卷理)已知三棱柱111ABCABC?的側(cè)棱與底面邊長都相等,1A在底面ABC內(nèi)的射影為ABC△的中心,則1AB與底面ABC所成角的正弦值等于(C)A.13B.23C.33D.23:C.由題意知三棱錐1AABC?為正四
2025-02-26 10:12
【摘要】第三章空間向量與立體幾何單元測試(時間:90分鐘 滿分:120分)第Ⅰ卷(選擇題,共50分)一、選擇題:本大題共10小題,每小題5分,共50分.1.以下四組向量中,互相平行的組數(shù)為( )①a=(2,2,1),b=(3,-2,-2);②a=(8,4,-6),b=(4,2,-3);③a=(0,-1,1),b=(0,3,-3);④a=(-3,2,0),b=(4,-3,3)
2024-08-03 18:25