【摘要】探索勾股定理(2)baca2+b2=c2利用拼圖來驗(yàn)證勾股定理:cab1、準(zhǔn)備四個(gè)全等的直角三角形(設(shè)直角三角形的兩條直角邊分別為a,b,斜邊為c);2、你能用這四個(gè)直角三角形拼成一個(gè)正方形嗎?拼一拼試試看3、你拼的正方形中是否含有以斜邊c的正方形?4、你能否就你拼出的圖說明a2
2024-12-12 08:42
【摘要】勾股定理(gou-gutheorem)直角三角形兩直角邊的平方和等于斜邊的平方。如果直角三角形兩直角邊分別為a、b,斜邊為c,那么222abc??abc探索勾股定理(2)baca2+b2=c2利用拼圖來驗(yàn)證勾股定理:cab1、準(zhǔn)備四個(gè)全等的直角三角形(設(shè)直角三
2024-12-12 02:44
【摘要】探索勾股定理北師大版八年級(jí)數(shù)學(xué)(上冊(cè))玉溪市新平縣新化中學(xué)周健設(shè)計(jì)玉溪市新平縣新化中學(xué)周健制作ABCABC(圖中每個(gè)小方格代表一個(gè)單位面積)圖1-1圖1-2(1)觀察圖1-1正方形A中含有個(gè)小方格,即A的面積是
2024-12-12 08:47
【摘要】第一章勾股定理參考例題[例1]如下圖所示,△ABC中,AB=15cm,AC=24cm,∠A=60°,求BC的長.分析:△ABC是一般三角形,若要求出BC的長,只能將BC置于一個(gè)直角三角形中.解:過點(diǎn)C作CD⊥AB于點(diǎn)D在Rt△ACD中,∠A=60°∠ACD=90
2024-12-15 03:02
【摘要】勾股定理abc勾股弦畢達(dá)哥拉斯在國外,相傳勾股定理是公元前500多年時(shí)古希臘數(shù)學(xué)家畢達(dá)哥拉斯首先發(fā)現(xiàn)的。因此又稱此定理為“畢達(dá)哥拉斯定理”。法國和比利時(shí)稱它為“驢橋定理”,埃及稱它為“埃及三角形”等。但他們發(fā)現(xiàn)的時(shí)間都比我國要遲得多。商高是公元前十一世
2025-01-01 13:49
【摘要】第一章勾股定理?復(fù)習(xí)與思考直角三角形三邊的關(guān)系勾股定理直角三角形的判別(勾股定理逆定理)知識(shí)回顧應(yīng)用三角的關(guān)系觀察下列表格:列舉猜想3、4、532=4+55、12、1352=12+137、24
【摘要】第一章勾股定理1.探索勾股定理(一)一、學(xué)生起點(diǎn)分析八年級(jí)學(xué)生已經(jīng)具備一定的觀察、歸納、探索和推理的能力.在小學(xué),他們已學(xué)習(xí)了一些幾何圖形面積的計(jì)算方法(包括割補(bǔ)法),但運(yùn)用面積法和割補(bǔ)思想解決問題的意識(shí)和能力還遠(yuǎn)遠(yuǎn)不夠.部分學(xué)生聽說過“勾三股四弦五”,但并沒有真正認(rèn)識(shí)什么是“勾股定理”.此外,學(xué)生普遍學(xué)習(xí)積極
2024-12-01 07:54
【摘要】 第一章勾股定理 參考例題 [例1]如下圖所示,△ABC中,AB=15cm,AC=24cm,∠A=60°,求BC的長. 分析:△ABC是一般三角形,若要求出BC的長,只能將BC置于一個(gè)直角...
2025-03-15 01:16
【摘要】探索勾股定理學(xué)習(xí)目標(biāo),并利用拼圖的方法論證勾股定理的存在.2.理解和掌握“直角三角形兩條直角邊的平方和等于斜邊的平方”.3.在探索和實(shí)際操作中掌握勾股定理在實(shí)際生活中的應(yīng)用.課前預(yù)習(xí)1.若直角三角形中兩直角邊分別為a,b,斜邊為c,則a,b,c之間的數(shù)量關(guān)系為
2024-12-07 22:44
【摘要】勾股定理復(fù)習(xí)學(xué)習(xí)目標(biāo):,會(huì)用拼圖法驗(yàn)證勾股定理..直角三角形的條件.問題導(dǎo)學(xué):?導(dǎo)學(xué)檢測:1〉直角三角形三邊長為6,8,x,則x=_______.5,12,則三邊上的高的和為____.10或2721138問題導(dǎo)學(xué):理嗎?abcab
2024-11-18 13:14
【摘要】勾股定理第一章一個(gè)直角三角形的直角邊長分別是3和4,你知道它的斜邊長是多少嗎?要解決這個(gè)問題,就用到了我們即將要學(xué)習(xí)的——勾股定理.勾股世界我國是最早了解勾股定理的國家之一.早在三多年前,周朝數(shù)學(xué)家商高就提出,將一根直尺折成一個(gè)直角三角形,如果勾等于三,股等于四,那么弦就等于五.即“勾三、股四、弦
2024-12-07 22:42
【摘要】初中數(shù)學(xué)(北師大版)八年級(jí)上冊(cè)第一章 勾股定理1 探索勾股定理知識(shí)點(diǎn)一????勾股定理的探索 探索勾股定理的方法?1 探索勾股定理例1 如圖1-1-1,在直角三角形外部作出3個(gè)正方形.設(shè)小方格的邊長為1,完成下列問題.圖1-1-1(1)正方形A中含有 ??
2025-06-21 12:45
2025-06-26 19:53
【摘要】讀一讀:勾股定理,我們把它稱為世界第一定理。它的重要性,通過這一章的學(xué)習(xí)已深有體驗(yàn)。首先,勾股定理是數(shù)形結(jié)合的最典型的代表。其次,了解勾股定理歷史的同學(xué)知道,正是由于勾股定理的發(fā)現(xiàn),導(dǎo)致無理數(shù)的發(fā)現(xiàn),引發(fā)了數(shù)學(xué)的第一次危機(jī)。勾股定理中的公式是第一個(gè)不定方程,有許許多多的數(shù)滿足這個(gè)方程,也是有完整解答的最早的不定方程,由此由它引導(dǎo)出各式各樣的不
2024-11-18 19:33
【摘要】第一章勾股定理1探索勾股定理2022秋季數(shù)學(xué)八年級(jí)上冊(cè)?B認(rèn)識(shí)勾股定理直角三角形兩直角邊的等于斜邊的,如果用a、b、c分別表示直角三角形的兩直角邊和斜邊,那么.自我診斷1.1.在△ABC中,∠C=90°,a、
2025-06-29 20:23