【摘要】§數(shù)學歸納法(一)一、基礎過關1.一個與正整數(shù)n有關的命題,當n=2時命題成立,且由n=k時命題成立可以推得n=k+2時命題也成立,則下列說法正確的是________.①該命題對于n2的自然數(shù)n都成立②該命題對于所有的正偶數(shù)都成立③該命題何時成立與k取值無關2.用數(shù)學
2024-12-16 23:42
【摘要】1.瞬時變化率——導數(shù)(一)一、基礎過關1.一質點運動的方程為s=5-3t2,若該質點在時間段[1,1+Δt](Δt0)內相應的平均速度為-3Δt-6,則該質點在t=1時的瞬時速度是________.2.已知曲線y=2x3上一點A(1,2),則A處的切線斜率的值為________.3.已知曲線
2024-12-17 01:48
【摘要】章末檢測一、填空題1.若集合A={x||x|≤1,x∈R},B={y|y=x2,x∈R},則A∩B=________.2.已知M={x|x≥22,x∈R},給定下列關系:①π∈M;②{π}M;③πM;④{π}∈M.其中正確的有________.(填序號)3.已知集合A
2024-12-20 02:37
【摘要】1.微積分基本定理一、基礎過關1.若F′(x)=x2,則F(x)的解析式正確的是______.①F(x)=13x3②F(x)=x3③F(x)=13x3+1④F(x)=13x3+c(c為常數(shù))2.設f(x)=?????x+1?x≤1?,12x2?x1?,則?
2024-12-17 06:24
【摘要】§導數(shù)在實際生活中的應用一、基礎過關1.煉油廠某分廠將原油精煉為汽油,需對原油進行冷卻和加熱,如果第x小時,原油溫度(單位:℃)為f(x)=13x3-x2+8(0≤x≤5),那么,原油溫度的瞬時變化率的最小值是________.2.設底為等邊三角形的直三棱柱的體積為V,那么其表面積最小時底面邊長為_
【摘要】1.函數(shù)的和、差、積、商的導數(shù)一、基礎過關1.下列結論不正確的是________.(填序號)①若y=3,則y′=0;②若f(x)=3x+1,則f′(1)=3;③若y=-x+x,則y′=-12x+1;④若y=sinx+cosx,則y′=cosx+si
2024-12-17 06:25
【摘要】1.最大值與最小值一、基礎過關1.函數(shù)f(x)=-x2+4x+7,在x∈[3,5]上的最大值和最小值分別是________,________.2.f(x)=x3-3x2+2在區(qū)間[-1,1]上的最大值是________.3.函數(shù)y=lnxx的最大值為________.4.函數(shù)f(x)=xex的最
【摘要】1.瞬時變化率——導數(shù)(二)一、基礎過關1.下列說法正確的是________(填序號).①若f′(x0)不存在,則曲線y=f(x)在點(x0,f(x0))處就沒有切線;②若曲線y=f(x)在點(x0,f(x0))處有切線,則f′(x0)必存在;③若f′(x0)不存在,則曲線y=f(
【摘要】§數(shù)學歸納法(二)一、基礎過關1.用數(shù)學歸納法證明等式1+2+3+?+(n+3)=?n+3??n+4?2(n∈N*),驗證n=1時,左邊應取的項是________.2.用數(shù)學歸納法證明“2nn2+1對于n≥n0的自然數(shù)n都成立”時,第一步證明中的起始值n0應取___
【摘要】§導數(shù)的運算1.常見函數(shù)的導數(shù)一、基礎過關1.下列結論中正確的個數(shù)為________.①f(x)=ln2,則f′(x)=12;②f(x)=1x2,則f′(3)=-227;③f(x)=2x,則f′(x)=2xln2;④f(x)=log2x,則f′(x)=1xln2
【摘要】章末質量評估(二)(時間:120分鐘滿分:160分)一、填空題(本大題共14小題,每小題5分,共70分,請把答案填寫在題中的橫線上)1.若數(shù)列{an}(n?N*)是等差數(shù)列,則有bn=a1+a2+?+ann(n?N*)也為等差數(shù)列.類比上述性質,相應地,若數(shù)列{}是等比數(shù)列,且>0(n?N*).則數(shù)列
2024-12-17 09:28
【摘要】1.簡單復合函數(shù)的導數(shù)一、基礎過關1.下列函數(shù)是復合函數(shù)的是________.(填序號)①y=-x3-1x+1②y=cos(x+π4)③y=1lnx④y=(2x+3)42.函數(shù)y=1?3x-1?2的導數(shù)y′=________.3.函數(shù)y=x2cos2x的導數(shù)y′=_______
【摘要】2.間接證明一、基礎過關1.反證法的關鍵是在正確的推理下得出矛盾.這個矛盾可以是________(填序號).①與已知條件矛盾②與假設矛盾③與定義、公理、定理矛盾④與事實矛盾2.否定:“自然數(shù)a,b,c中恰有一個偶數(shù)”時正確的反設為__________________________.3.
【摘要】2.推理案例賞析一、基礎過關1.有兩種花色的正六邊形地板磚,按下面的規(guī)律拼成若干個圖案,則第6個圖案中有底紋的正六邊形的個數(shù)是________.2.觀察下列不等式:112,1+12+131,1+12+13+…+1732,1+12+13+…+1152,1+12+13+
【摘要】第1章導數(shù)及其應用§導數(shù)的概念1.平均變化率一、基礎過關1.如圖,函數(shù)y=f(x)在A,B兩點間的平均變化率為________.2.過曲線y=2x上兩點(0,1),(1,2)的割線的斜率為________.3.函數(shù)y=1在[2,5]上的平均變化率是________.