【摘要】九年級數學(上)第四章:對圓的進一步認識-垂徑定理應用垂徑定理三種語言?定理垂直于弦的直徑平分弦,并且平分弦所的兩條弧.?老師提示:?垂徑定理是圓中一個重要的結論,三種語言要相互轉化,形成整體,才能運用自如.想一想6駛向勝利的彼岸●OABC
2025-11-16 04:52
【摘要】問題:你知道趙州橋嗎?它是1300多年前我國隋代建造的石拱橋,是我國古代人民勤勞與智慧的結晶.它的主橋是圓弧形,它的跨度(弧所對的弦的長)為,拱高(弧的中點到弦的距離)為,你能求出趙洲橋主橋拱的半徑嗎?趙州橋主橋拱的半徑是多少?第三章圓·OABCDE沿著圓的任意一條
2025-11-23 22:39
【摘要】圓的對稱性●O③AM=BM,?AB是⊙O的一條弦.?你能發(fā)現圖中有哪些等量關系?與同伴說說你的想法和理由.駛向勝利的彼岸?作直徑CD,使CD⊥AB,垂足為M.●O?右圖是軸對稱圖形嗎?如果是,其對稱軸是什么??我們發(fā)現圖中有:ABCDM└?由
2025-11-12 23:18
【摘要】第三章圓垂徑定理廣東省佛山華英學校羅建輝?等腰三角形是軸對稱圖形嗎??如果將一等腰三角形沿底邊上的高對折,可以發(fā)現什么結論??如果以這個等腰三角形的頂角頂點為圓心,腰長為半徑畫圓,得到的圖形是否是軸對稱圖形呢?類比引入③AM=BM,●OABCDM└①CD是直徑
2025-11-23 00:01
【摘要】垂徑定理一、選擇題1.下列語句中,不正確的個數是()①弦是直徑②半圓是?、坶L度相等的弧是等弧④經過圓內一點可以作無數條直徑A.1B.2C.3D.42.如圖,△ABC內接于⊙O,OD⊥BC于D,∠A=50°,則∠OCD的度
2024-12-10 13:10
【摘要】垂徑定理檢測(時間45分鐘滿分100分)一.選擇題(每小題5分,共50分)1.(2017秋?新羅區(qū)校級期中)如圖,將半徑為4cm的圓折疊后,圓弧恰好經過圓心,則折痕的長為()A.2B.4cmC.D.2.(2017?黔西南州)如圖,在⊙O
2025-11-21 16:25
【摘要】北京師范大學出版社九年級|下冊第三章圓3垂徑定理【創(chuàng)設情境】問題1請拿出準備好的囿形紙片,將其沿囿心所在的任一條直線對折,你會發(fā)現什么?多折幾次試一試.追問1:由折紙可知囿是軸對稱圖形嗎?追問2:如果是一個殘缺的囿形紙片,你能找到它的囿心嗎?北京師范大學出版社九年級|下冊
2025-06-26 20:15
2025-06-29 03:51
【摘要】【垂徑定理】(P74-75)【學習目標】1、學會利用圓的軸對稱性研究垂徑定理及其逆定理;2、能夠運用垂徑定理及其逆定理解決問題.一、舊知回顧1、判斷下列圖形是否是軸對稱圖形,若是,請畫出它相應的對稱軸.2、說出圓心角、弧、弦之間存在的相等關系定理二、新知學習1、自學
2025-11-25 14:39
【摘要】第三章圓《垂徑定理》教學設計說明廣東省佛山市華英學校羅建輝一、學生起點分析學生的知識技能基礎:學生在七、八年級已經學習過軸對稱圖形的有關概念和性質,等腰三角形的對稱性,以及本節(jié)定理的證明要用到的三角形全等的知識,在本章前兩節(jié)課中也已經初步理解了圓的軸對稱性和圓弧的表示等知識,具備探索證明幾何定理
【摘要】3垂徑定理第三章圓課堂達標素養(yǎng)提升3垂徑定理第三章圓課堂達標一、選擇題3垂徑定理1.如圖K-21-1,AB是⊙O的直徑,弦CD⊥AB,垂足為M,則下列結論不一定成立的是()A.CM=DM
2025-06-24 12:12
2025-06-25 15:07
【摘要】請觀察下列三個銀行標志有何共同點?圓的對稱性?圓是軸對稱圖形嗎?如果是,它的對稱軸是什么?你能找到多少條對稱軸?●O你是用什么方法解決上述問題的?圓的對稱性?圓是軸對稱圖形.圓的對稱軸是任意一條經過圓心的直線,它有無數條對稱軸.●O可利用折疊的方法即可解決上述問題.注意:
2024-12-19 21:27
【摘要】垂徑定理第1課時垂徑定理1.(4分)如圖,在⊙O中,OC⊥弦AB于點C,AB=4,OC=1,則OB的長是()A.3B.5C.15D.17B2.(4分)如圖,AB是⊙O的直徑,弦CD⊥AB于點E,
2025-07-27 18:26
2024-12-19 13:07