【摘要】EE
2025-06-23 21:28
【摘要】北師大版九年級下冊數(shù)學(xué)點在圓外,這個點到圓心的距離大于半徑點在圓上,點在圓內(nèi),這個點到圓心的距離等于半徑這個點到圓心的距離小于半徑ABCO點與圓的位置關(guān)系情境導(dǎo)入本節(jié)目標(biāo),充分掌握圓的軸對稱性.、推理,充分把握圓中的垂徑定理及其逆定理.,不實踐相結(jié)合,運用垂徑定理及其逆定理進(jìn)
2025-06-24 05:26
【摘要】勤學(xué)的人,總是感到時間過得太快;懶惰的人,卻總是埋怨時間跑得太慢。
2024-12-07 22:46
【摘要】第三章圓知識點1垂徑定理及推論(A)①弦的垂直平分線經(jīng)過圓心;②平分弦的直徑垂直于弦;③平分弦的直徑平分弦所對的兩段弧.☉O中,弦AB的長為6,圓心O到AB的距離為4,則☉O的半徑為(C)3.(瀘州中考)如圖,AB是☉O的直徑,弦C
2025-06-26 12:05
【摘要】課題:垂徑定理課型:新授課年級:九年級教學(xué)目標(biāo):、垂徑定理及其逆定理的過程.、垂徑定理及其逆定理,并會運用其解決有關(guān)問題..進(jìn)一步體會和理解研究幾何圖形的各種方法.教學(xué)重點與難點:重點:探索圓的軸對稱性、垂徑定理及其逆定理的過程.難點:運用垂徑定理及其逆定理解決有關(guān)問題
2024-12-20 05:04
【摘要】﹡3垂徑定理【基礎(chǔ)梳理】文字?jǐn)⑹鰩缀握Z言垂徑定理垂直于弦的直徑_____這條弦,并且_____弦所對的弧∵CD⊥AB,∴AE__BE,平分平分=ADBD?文字?jǐn)⑹鰩缀握Z言垂徑定理的推論平分弦(不是直徑)的直徑
2025-06-30 02:47
2025-06-21 12:39
【摘要】問題:你知道趙州橋嗎?它是1300多年前我國隋代建造的石拱橋,是我國古代人民勤勞與智慧的結(jié)晶.它的主橋是圓弧形,它的跨度(弧所對的弦的長)為,拱高(弧的中點到弦的距離)為,你能求出趙洲橋主橋拱的半徑嗎?趙州橋主橋拱的半徑是多少?第三章圓·OABCDE沿著圓的任意一條
2024-11-29 22:39
【摘要】*垂徑定理第三章圓導(dǎo)入新課講授新課當(dāng)堂練習(xí)課堂小結(jié),了解圓是軸對稱圖形.垂直于弦的直徑的性質(zhì)和推論,并能應(yīng)用它解決一些簡單的計算、證明和作圖問題.(重點).(難點)學(xué)習(xí)目標(biāo)問題:你知道趙州橋嗎?它的主橋是圓弧形,它的跨度(弧所對的弦的長)為37m,拱高(弧的中點到弦的距離)為,你
2025-06-24 12:03
【摘要】垂徑定理第2章圓垂徑定理知識目標(biāo)目標(biāo)突破第2章圓總結(jié)反思知識目標(biāo)1.通過圓的對稱性折疊操作,理解垂徑定理.2.通過對垂徑定理的理解,采用轉(zhuǎn)化和對稱思想解決有關(guān)直角三角形的計算與證明問題.3.在掌握垂徑定理的基礎(chǔ)上,能應(yīng)用垂徑定理解決實際生活中
2025-06-22 12:13
2025-06-22 12:12
【摘要】*3垂徑定理,充分掌握圓的軸對稱性.、推理,充分把握圓中的垂徑定理及其逆定理.,與實踐相結(jié)合,運用垂徑定理及其逆定理進(jìn)行有關(guān)的計算和證明.點在圓外,這個點到圓心的距離大于半徑點在圓上,點在圓內(nèi),這個點到圓心的距離等于半徑這個點到圓心的距離小于半徑ABCO點與圓的位置關(guān)系
2025-06-24 02:50
2025-06-24 02:56
【摘要】第三章圓第3節(jié)垂徑定理問題:你知道趙州橋嗎?它是1300多年前我國隋代建造的石拱橋,是我國古代勞動人民勤勞與智慧的結(jié)晶.它的主橋是圓弧形,它的跨度(弧所對的弦的長)為m,拱高(弧的中點到弦的距離)為m,你能求出趙州橋主橋拱的半徑嗎?趙州橋的半徑是多少?③AM=BM,垂徑定理?
2024-12-20 11:41