【摘要】九年級數(shù)學(xué)(上冊)第一章證明(二)(1)勾股定理與它的逆定理駛向勝利的彼岸八仙過海?一個三角形滿足什么條件時便可成為等邊三角形??與同伴交流你在探索思路的過程中的具體做法.開啟智慧ACB600ACB600ACB600?你認(rèn)為有一個角是
2024-12-08 19:27
【摘要】直角三角形一、學(xué)情分析學(xué)生在學(xué)習(xí)直角三角形全等判定定理“HL”之前,已經(jīng)掌握了一般三角形全等的判定方法,在本章的前一階段的學(xué)習(xí)過程中接觸到了證明三角形全等的推論,在本節(jié)課要掌握這個定理的證明以及利用這個定理解決相關(guān)問題還是一個較高的要求。二、教學(xué)任務(wù)分析[來源:學(xué)_科_網(wǎng)]本節(jié)課是三角形全等的最后一部分內(nèi)容,也是很重要的一部分內(nèi)容
2024-12-03 22:38
【摘要】1直角三角形課題直角三角形本課(章節(jié))需10課時,本節(jié)課為第3課時,為本學(xué)期總第3課時教學(xué)目標(biāo)知識與技能:1、讓學(xué)生體驗勾股定理的探索過程;2、掌握勾股定理;3、學(xué)會用勾股定理解決簡單的幾何問題.過程與方法:經(jīng)歷操作、歸納和猜想,用面積法推導(dǎo)作出肯定結(jié)論的過程,來了解勾股定理情感態(tài)度與價值觀:了解我國古代
2024-12-03 04:24
【摘要】能得到直角三角形嗎有一個問題想請教大家用什么辦法來確定昨天我給大家的三角形是直角三角形?我聽說用一把刻度尺就可以判定它是否是直角三角形了,這是真的嗎?閱讀P9的課文1、這段課文說得是什么?2、依照課文所說的做一做:把一條線段分成12等份,在第三、第七等分處折成一個三角形,并量一量最大角是多少度。3、這個三角形的三邊分別
2024-12-12 00:25
【摘要】九年級數(shù)學(xué)(上冊)第一章證明(二)(2)直角三角形全等的證明駛向勝利的彼岸三角形全等的判定?公理:三邊對應(yīng)相等的兩個三角形全等(SSS).?公理:兩邊及其夾角對應(yīng)相等的兩個三角形全等(SAS).?公理:兩角及其夾邊對應(yīng)相等的兩個三角形全等(ASA).?推論:兩角及其中一角的對邊對應(yīng)相等的兩個三角形全等(
2024-11-21 01:21
【摘要】進(jìn)入菜單義務(wù)程標(biāo)準(zhǔn)實驗教科書·數(shù)學(xué)九年級上冊(北師大版)直角三角形(二)教學(xué)目標(biāo)內(nèi)容菜單問題探究做一做議一議練一煉想一想小組活動例題講解A課堂小結(jié)布置作業(yè)復(fù)習(xí)思考例題講解B1、說出判定一般三角形全等的依據(jù)。
2025-01-03 00:36
【摘要】如圖,在高為2米,坡角為30°的樓梯表面鋪毯,地毯長度約為多米?30°2米習(xí)題獨立作業(yè)2?,其中BC⊥AC,∠A=300,AB=10m,CB1⊥AB,B1C1⊥AC,垂足為B1,C1,那么BC的長是多少?B1C1呢?老師提示:對于含300角的直角三角形邊之間,角之間的
2025-01-03 19:09
2025-01-03 01:26
【摘要】單元知識網(wǎng)絡(luò)直角三角形的邊角關(guān)系解直角三角形知一邊一銳角解直角三角形知兩邊解直角三角形添設(shè)輔助線解直角三角形知斜邊一銳角解直角三角形知一直角邊一銳角解直角三角形知兩直角邊解直角三角形知一斜邊一直角邊解直角三角形實際應(yīng)用抽象出圖形,再添設(shè)輔
2024-11-22 12:36
【摘要】能得到直角三角形嗎古埃及人曾用下面的方法得到直角:他們用13個等距離的結(jié)把一根繩子分成等長的12段,一個工匠同時握住第一個結(jié)和第13個結(jié),兩個助手分別握住第4個結(jié)和第8個結(jié),拉緊繩子,就會得到一個直角三角形,其直角在第4個結(jié)處。做一做下列的五組數(shù)分別是一個三角形的三邊長a,b,c:①3,4,5;
2024-11-21 12:19
【摘要】直角三角形1.下列命題中,是真命題的是()A.相等的角是對頂角B.兩直線平行,同位角互補C.等腰三角形的兩個底角相等D.直角三角形中兩銳角互補2.若三角形三邊長之比為1∶3∶2,則這個三角形中的最大角的度數(shù)是()A.60°B.
2024-11-27 00:40
【摘要】解直角三角形(1)要想使人安全地攀上斜靠在墻面上的梯子的頂端,梯子與地面所成的角α一般要滿足50°≤α≤75°.現(xiàn)有一個長6m的梯子.問:(1)使用這個梯子最高可以安全攀上多高的平房?(精確到)這個問題歸結(jié)為:在Rt△ABC中,已知∠A=75°,斜邊AB=6,求BC的長角α
2024-12-06 17:04
【摘要】課題、直角三角形(一)課型新授課教學(xué)目標(biāo)1、要求學(xué)生掌握直角三角形的性質(zhì)定理(勾股定理)和判定定理,并能應(yīng)用定理解決與直角三角形有關(guān)的問題。2、了解逆命題、互逆命題及逆定理、互逆定理的含義,能結(jié)合自己的生活及學(xué)習(xí)體驗舉出逆命題、互逆命題及逆定理、互逆定理的例子。3、進(jìn)一步掌握推理證明的方法,拓發(fā)展演繹推理能力,培養(yǎng)思維
2024-12-19 23:21
【摘要】直角三角形用Rt△表示,如圖記作Rt△ABCACB直角邊斜邊直角邊直角三角形的兩個銳角互余。反過來,有兩個角互余的三角形是直角三角形例1如圖,CD是Rt△ABC斜邊上的高。(1)請找出圖中各對互余的角。ACBD12(2)請找出圖中各對相等的角。
2024-08-31 00:31