【摘要】:2baab??引入新課提問1:我們把“風(fēng)車”造型抽象成下圖.在正方形ABCD中有4個(gè)全等的直角三角形.設(shè)直角三角形的兩條直角邊的長為a、b,那么正方形的邊長為多少?面積為多少呢?ADCBGEFH引入新課提問1:我們把“風(fēng)車”造型抽象成下圖.在
2024-12-01 18:20
【摘要】高一數(shù)學(xué)集體備課學(xué)案與教學(xué)設(shè)計(jì)章節(jié)標(biāo)題第三章不等式基本不等式(1)計(jì)劃學(xué)時(shí)2學(xué)案作者高考要求掌握基本不等式,并能運(yùn)用基本不等式解決一些簡單最大(小)值問題;培養(yǎng)學(xué)生探究能力以及分析問題解決問題的能力。三維目標(biāo)1、知識與能力目標(biāo):掌握基本不等式,并能運(yùn)用基本不等式解決一些簡單問題;培養(yǎng)學(xué)生探究能力以
2024-12-10 14:57
【摘要】(一)教學(xué)目標(biāo)1.知識與技能:使學(xué)生感受到在現(xiàn)實(shí)世界和日常生活中存在著大量的不等關(guān)系,在學(xué)生了解了一些不等式(組)產(chǎn)生的實(shí)際背景的前提下,學(xué)習(xí)不等式的有關(guān)內(nèi)容。:以問題方式代替例題,學(xué)習(xí)如何利用不等式研究及表示不等式,利用不等式的有關(guān)基本性質(zhì)研究不等關(guān)系;3.情態(tài)與價(jià)值:通過學(xué)生在學(xué)習(xí)過程中的感受、體驗(yàn)、認(rèn)識狀況及理解程度,注重問題情境
2024-11-30 15:56
【摘要】不等關(guān)系與不等式(第一課時(shí))【教學(xué)目標(biāo)】,鼓勵(lì)學(xué)生用數(shù)學(xué)觀點(diǎn)進(jìn)行觀察、歸納、抽象,使學(xué)生感受數(shù)學(xué)、走進(jìn)數(shù)學(xué)、改變學(xué)生的數(shù)學(xué)學(xué)習(xí)態(tài)度。2.建立不等觀念,并能用不等式或不等式組表示不等關(guān)系。3.了解不等式或不等式組的實(shí)際背景。。【重點(diǎn)難點(diǎn)】重點(diǎn):1.通過具體的問題情景,讓學(xué)生體會(huì)不等量關(guān)系存在的普遍性及
【摘要】課題:§不等式與不等關(guān)系第1課時(shí)授課類型:新授課【教學(xué)目標(biāo)】1.知識與技能:通過具體情景,感受在現(xiàn)實(shí)世界和日常生活中存在著大量的不等關(guān)系,理解不等式(組)的實(shí)際背景,掌握不等式的基本性質(zhì);2.過程與方法:通過解決具體問題,學(xué)會(huì)依據(jù)具體問題的實(shí)際背景分析問題、解決問題的方法;3.情態(tài)與價(jià)值:通過解決具體問題,體
【摘要】固原一中高二數(shù)學(xué)組第九周集體備課初稿教學(xué)內(nèi)容:不等關(guān)系與不等式一元二次不等式及其解法二元一次不等式(組)與簡單的線性規(guī)劃教學(xué)時(shí)間:10月21日至10月26日主備(講)人:楊彎彎課時(shí)教學(xué)設(shè)計(jì):第一、二課時(shí)教學(xué)內(nèi)容不等關(guān)系與不等式三維目標(biāo)一、知識與技能,并
2024-12-10 18:27
【摘要】基本不等式以培養(yǎng)學(xué)生探究精神為出發(fā)點(diǎn),著眼于知識的生成和發(fā)展,著眼于學(xué)生的學(xué)習(xí)體驗(yàn),設(shè)置問題,由淺入深、循序漸進(jìn),給不同層次的學(xué)生提供思考、創(chuàng)造和成功的機(jī)會(huì)。特進(jìn)行如下教學(xué)設(shè)計(jì):(一)設(shè)問激疑,創(chuàng)設(shè)情景展示北京召開的第24屆國際數(shù)學(xué)家大會(huì)的會(huì)標(biāo),讓學(xué)生思考,圖案由哪些幾何圖形拼湊而成,由此你能否找到一些相等或不等關(guān)系?接著通過三個(gè)問題
2024-12-20 20:20
【摘要】§一元二次不等式及其解法(1)第05周星期3第23課時(shí)【教學(xué)目標(biāo)】1.知識與技能:理解一元二次方程、一元二次不等式與二次函數(shù)的關(guān)系,掌握圖像法解一元二次不等式的方法;培養(yǎng)數(shù)形結(jié)合的能力,培養(yǎng)分類討論的思想方法,培養(yǎng)抽象概括能力和邏輯思維能力;2.過程與方法:經(jīng)歷從實(shí)際情境中
【摘要】第四課時(shí)2.5解含參數(shù)的不等式一、知識與技能、一元二次不等式解法的步驟、解法與二次函數(shù)的關(guān)系兩者之間的區(qū)別與聯(lián)系;(組),正確地求出分式不等式的解集;,進(jìn)一步用數(shù)軸標(biāo)根法求解分式及高次不等式;,對給定的與一元二次不等式有關(guān)的問題,嘗試用一元二次不等式解法與二次函數(shù)的有關(guān)知識解
【摘要】【高考調(diào)研】2021年高中數(shù)學(xué)課時(shí)作業(yè)32基本不等式2新人教版必修5(第二次作業(yè))1.下列函數(shù)中,最小值為4的是()A.f(x)=x+4xB.f(x)=2×x2+5x2+4C.f(x)=3x+4×3-xD.f(x)=lgx+logx10答案C
2024-12-10 01:20
【摘要】2abab??(0,0)ab??學(xué)習(xí)目標(biāo)?會(huì)用基本不等式證明一些簡單不等式;?會(huì)用基本不等式解決簡單的最值問題.(重點(diǎn))如果a、b?R,那么a2+b2?2ab(當(dāng)且僅當(dāng)a=b時(shí)取“=”號)如果a,b是正數(shù),那么(當(dāng)且僅當(dāng)a=b
2024-11-24 17:13
【摘要】基本不等式A組基礎(chǔ)鞏固1.若x0,y0,且2x+8y=1,則xy有()A.最大值64B.最小值164C.最小值12D.最小值64解析:xy=xy??????2x+8y=2y+8x≥22y·8x=8xy,∴xy≥8,即xy≥64,當(dāng)且僅當(dāng)???
【摘要】基本不等式請嘗試用四個(gè)全等的直角三角形拼成一個(gè)“風(fēng)車”圖案?趙爽弦圖a2+b2≥2ab?該結(jié)論成立的條件是什么?若a,b∈R,那么?形的角度?數(shù)的角度a2+b2-2ab=(a-b)2≥0a0,b0
2024-11-29 05:40
【摘要】主講老師::復(fù)習(xí)引入1.基本不等式:復(fù)習(xí)引入1.基本不等式:復(fù)習(xí)引入1.基本不等式:前者只要求a,b都是實(shí)數(shù),而后者要求a,b都是正數(shù).;SMT貼片SMTSMT貼片加工SMT加工貼片加工廠;出歷陽文育羊柬進(jìn)攻彭城安都領(lǐng)步
2024-08-31 01:54
【摘要】基本不等式的應(yīng)用一.基本不等式1.(1)若,則(2)若,則(當(dāng)且僅當(dāng)時(shí)取“=”)2.(1)若,則(2)若,則(當(dāng)且僅當(dāng)時(shí)取“=”)(3)若,則(當(dāng)且僅當(dāng)時(shí)取“=”),則(當(dāng)且僅當(dāng)時(shí)取“=”);若,則(當(dāng)且僅當(dāng)時(shí)取“=”)若,則(當(dāng)且僅當(dāng)時(shí)取“=”),則(當(dāng)且僅當(dāng)時(shí)取“=”)若,則(當(dāng)且僅當(dāng)時(shí)取“=”),則(當(dāng)且僅當(dāng)時(shí)取“=”)
2024-08-20 04:58