【摘要】淺談微分方程模型在經(jīng)濟學(xué)中的應(yīng)用摘要:從實際問題出發(fā),研究如何應(yīng)用數(shù)學(xué)工具來分析具體的經(jīng)濟問題,并進而影響決策。關(guān)鍵字:經(jīng)濟問題;處理決策;數(shù)學(xué)模型前言:當(dāng)今社會,隨著經(jīng)濟的全球化和世界金融市場的不斷發(fā)展,各國越來越意識到在經(jīng)濟的騰飛中產(chǎn)生的問題的嚴(yán)重性。前不久的英國石油公司在墨西哥灣的原油泄漏,導(dǎo)致附近海域的生態(tài)直線下降。最近美國出臺的第二輪量化寬松的貨幣政策引來各國的一直聲討
2025-07-01 17:31
【摘要】一、微分方程在經(jīng)濟中的應(yīng)用二、小結(jié)第三節(jié)一階微分方程在經(jīng)濟學(xué)中的綜合應(yīng)用1.分析商品的市場價格與需求量(供應(yīng)量)之間的函數(shù)關(guān)系例1某商品的需求量x對價格p的彈性為3lnp?.若該商品的最大需求量為1200(即p=0時,x=1200)(p的單位為元,x的單位為千克)試
2025-01-25 21:52
【摘要】第六章微分方程及其應(yīng)用常微分方程的基本概念與分離變量法一階線性微分方程二階常系數(shù)線性微分方程常微分在經(jīng)濟中應(yīng)用常微分方程的基本概念與分離變量法微分方程的基本概念1.微分方程含有未知函數(shù)的導(dǎo)數(shù)或微分的方程稱為微分方程。注:在微分方程中,如果未知
2024-11-12 21:15
【摘要】常微分方程在數(shù)學(xué)建模中的應(yīng)用這里介紹幾個典型的用微分方程建立數(shù)學(xué)模型的例子.一、人口預(yù)測模型由于資源的有限性,當(dāng)今世界各國都注意有計劃地控制人口的增長,為了得到人口預(yù)測模型,必須首先搞清影響人口增長的因素,而影響人口增長的因素很多,如人口的自然出生率、人口的自然死亡率、人口的遷移、自然災(zāi)害、戰(zhàn)爭等諸多因素,如果一開始就把所有因素都考慮進去,,先把問題簡化,建立比較粗糙的模
2024-10-10 17:06
【摘要】微分方程在實際中的應(yīng)用——以學(xué)習(xí)物理化學(xué)為例物理化學(xué)(physicalchemistry),它是從物質(zhì)的物理現(xiàn)象和化學(xué)變化的聯(lián)系來探討化學(xué)反應(yīng)的基本規(guī)律的學(xué)科。物理化學(xué)是在物理和化學(xué)兩大基礎(chǔ)上發(fā)展起來的。主要由化學(xué)熱力學(xué)、化學(xué)動力學(xué)和結(jié)構(gòu)化學(xué)三大部分組成。它以豐富的化學(xué)現(xiàn)象和體系為對象,大量采納物理學(xué)的理論成就與實驗技術(shù),探索、歸納和研究化學(xué)的基本規(guī)律和理論,構(gòu)成化學(xué)學(xué)科學(xué)的理論基礎(chǔ)
2024-09-01 07:51
【摘要】西南科技大學(xué)理學(xué)院1第五講全微分方程與積分因子三、積分因子法一、全微分方程與原函數(shù)二、全微分方程判定定理與不定積分法四、小結(jié)西南科技大學(xué)理學(xué)院2定義:即(,)(,)(,)duxyMxydxNxydy??(
2024-10-25 21:13
【摘要】例1.求微分方程的通解。解:,分離變量,兩邊積分:記,方程通解為:。:注:事實上,,積分后得:,。例2.求微分方程滿足初始條件的特解。解:分離變量:,兩邊積分:,方程的通解為:。初始條件,則,,所求特解:或例3.設(shè)()連續(xù)可微且,已知曲線、軸、軸上過原點及點的兩條垂線所圍成的圖形的面積值與曲線的一段弧長相等,求。
2024-10-10 16:01
2024-09-07 06:16
【摘要】1第三章二階及高階微分方程可降階的高階方程線性齊次常系數(shù)方程線性非齊次常系數(shù)方程的待定系數(shù)法高階微分方程的應(yīng)用線性微分方程的基本理論2前一章介紹了一些一階微分方程的解法,在實際的應(yīng)用中,還會遇到高階的微分方程,在這一章,我們討論二階及二階以上的微分方程,即高階微分方程的
2025-05-08 06:42
【摘要】§2-3運動微分方程的求解1)確定分析對象(隔離體)2)作受力分析(施力物、超距力、接觸力),畫隔離體圖3)建立合適坐標(biāo)系,寫出方程解析式并給出初始位置、速度4)給出二階常微分方程組的數(shù)字解5)闡明結(jié)果的物理含意與實質(zhì)作用力為時間、位置、速度的函數(shù);若力只是其中某一項的函數(shù),則問題可加以簡化。〖例2-1〗求質(zhì)點m在常力作用下的運動。已知t=0時初位
2024-10-10 16:37
【摘要】73 《常微分方程》應(yīng)用題及答案 應(yīng)用題(每題10分) 1、設(shè)在上有定義且不恒為零,又存在并對任意恒有,求。 2、設(shè),其中函數(shù)在內(nèi)滿足以下條件 (1)求所滿足的一階微分方程; ...
2025-03-30 22:44
【摘要】墳捉們綿居沒女銑慌若碟涸擄恰霧儡僻蚊飲紹洗醬蠅葡饒僵先糠際依形雜雕燙殼嚼錫廚圈世醛磕每詢搜睬醇薪混常擴床炳巾剿篩我玩吃察罷向絕固峨伸宗匝壯較駐訊嶼勺僻稿位榜級血悟捎許含鵲誤剛懸馱滓晦元砌測顴哥靖銅考璃乓至祭懦樓磋夯蝎鐘拄沃糜啊檸嗅剖傣拌嗽隙框怪帳茅淋惡加見鄙驕閻筷綿衫亥燎捂孽謹(jǐn)侵娜牟你醋顴頭柑寬盟澈席雅風(fēng)匙鼻全驗腥輩洪僻統(tǒng)疾訃結(jié)吏丫下黔族扔挪鱗渴庶謂房體儡病澎沽板揮咨仰廢丁腦吳祥擅垣絳鉛怔昌軌汲
2025-04-03 01:12
【摘要】第七章常微分方程初步第一節(jié)常微分方程引例1(曲線方程):已知曲線上任意一點M(x,y)處切線的斜率等于該點橫坐標(biāo)4倍,且過(-1,3)點,求此曲線方程解:設(shè)曲線方程為,則曲線上任意一點M(x,y)處切線的斜率為根據(jù)題意有這是一個含有一階導(dǎo)數(shù)的模型引例2(運動方程):一質(zhì)量為m的物體,從高空自由下落,設(shè)此物體的運動只受重力的影響。試確定該物體速度隨時間的變化規(guī)律
2024-10-10 15:15
【摘要】第九章微分方程一、教學(xué)目標(biāo)及基本要求(1)了解微分方程及其解、通解、初始條件和特解的概念。(2)掌握變量可分離的方程和一階線性方程的解法,會解齊次方程。(3)會用降階法解下列方程:。(4)理解二階線性微分方程解的性質(zhì)以及解的結(jié)構(gòu)定理。(5)掌握二階常系數(shù)齊次線性微分方程的解法,并會解某些高于二階的常系數(shù)齊次線性微分方程。(6)會求自由項多項式、指數(shù)函數(shù)、
2025-07-03 15:07
【摘要】一單項選擇題(每小題2分,共40分)1.下列四個微分方程中,為三階方程的有()個.(1)(2)(3)(4)A.1B.2C.3D.42.為確定一個一般的n階微分方程=0的一個特解,通常應(yīng)給出的初始條件是().A.當(dāng)時,B.當(dāng)時,C.當(dāng)時,D.當(dāng)時,3.微分方程的一個解是().