【摘要】歡迎交流唯一QQ1294383109希望大家互相交流數(shù)列求和及綜合應用一、選擇題1.在各項均為正數(shù)的等比數(shù)列{an}中,a3a5=4,則數(shù)列{log2an}的前7項和等于()A.7B.8C.27D.28解析:選{an}中,由a3a5=4,得a24=4,a4=2
2024-09-03 20:07
【摘要】一般數(shù)列的求和471031022222()nnN???????引例求和:答案:42(81)7n??數(shù)列求和的常用方法:方法Ⅰ公式法求和dnnnaaanSnn2)1(2)(111??????、等差數(shù)列的求和公式??????????
2024-11-24 03:04
【摘要】?掌握數(shù)列求和的幾種常見方法.?【命題預測】?數(shù)列的求和在近幾年高考中,填空題與解答題都有出現(xiàn),重點以容易題和中檔題為主,基本知識以客觀題出現(xiàn),綜合知識則多以解答題體現(xiàn),主要是探索型和綜合型題目.復習時,要具有針對性地訓練,并以“注重數(shù)學思想方法、強化運算能力、重點知識重點訓練”的角度做好充分準備.第
2025-01-16 07:27
【摘要】數(shù)列的通項公式及求和通項的求法{特殊數(shù)列{等差數(shù)列等比數(shù)列一般數(shù)列an=S1(n=1),Sn-Sn-1(n≥2).累加若an-an-1=f(n)累積1?nnaa=f(n)湊等比an=pan-1+q猜想、
2024-08-09 15:41
【摘要】數(shù)列求和、數(shù)列的綜合應用練習題1.數(shù)列共十項,且其和為240,則的值為()2.已知正數(shù)等差數(shù)列的前20項的和為100,那么的最大值是()
2025-04-03 02:51
【摘要】難點數(shù)列綜合應用問題縱觀近幾年的高考,在解答題中,有關數(shù)列的試題出現(xiàn)的頻率較高,不僅可與函數(shù)、方程、不等式、復數(shù)相聯(lián)系,而且還與三角、立體幾何密切相關;數(shù)列作為特殊的函數(shù),在實際問題中有著廣泛的應用,如增長率,減薄率,銀行信貸,濃度匹配,養(yǎng)老保險,圓鋼堆壘等問題.這就要求同學們除熟練運用有關概念式外,還要善于觀察題設的特征,聯(lián)想有關數(shù)學知識和方法,迅速確定解題的方
2025-01-18 15:37
【摘要】等差與等比數(shù)列綜合(2)作業(yè)訂正:兩個等差數(shù)列{an}{bn},a1=0,b1=-4,Sk,Sk’分別是這兩個數(shù)列前k,項和,若Sk+Sk’=0,則ak+bk=?變:數(shù)列{an+b},a,b為常數(shù),a1時,比較Sn、n(a+b)、n(an+b)題題通23練45頁10(1)已知數(shù)列{},=2
2024-08-09 15:40
【摘要】(在臉上或手上等):~粉|~碘酒|~護手霜?!颈頁P】biǎoyánɡ動對好人好事公開贊美:~勞動模范|他在廠里多次受到~?!静扇 縞ǎiqǔ動①選擇施行(某種方針、政策、措施、手段、形式、態(tài)度等):~守勢|~緊急措施。②名盛飲料或其他液體的器具:酒~|水~。特點是筆畫相連,【才】1cái①名才能:德~兼?zhèn)洌唷嗨嚕@人很有~。過去多用來做包裝紙或衛(wèi)生用
2024-08-09 15:39
【摘要】第五節(jié)數(shù)列求和基礎梳理數(shù)列求和的常用方法(1)公式法①直接用等差、等比數(shù)列的求和公式.②掌握一些常見的數(shù)列的前n項和.1+2+3+…+n=____________;1+3+5+…+(2n-1)=______.(1)2nn?n2(2)倒序相加法如果一個數(shù)列{
2024-11-24 18:12
【摘要】第7講數(shù)列求和與數(shù)列綜合應用第7講│數(shù)列求和與數(shù)列綜合應用主干知識整合第7講│主干知識整合數(shù)列求和常用的方法(1)公式法:①等差數(shù)列求和公式;②等比數(shù)列求和公式.特別提示:運用等比數(shù)列求和公式,務必檢查其公比與1的關系,必要時需分類討論;③常用公式:1+2
2025-05-06 20:36
【摘要】2020屆高考數(shù)學復習強化雙基系列課件36《等差數(shù)列與等比數(shù)列的綜合問題》課前熱身:30,37,32,35,34,33,36,(),38的特點,在括號內適當?shù)囊粋€數(shù)是_____.x的方程x2-x+a=0和x2-x+b=0(a,b∈R且a≠b)的四
2024-11-23 08:49
2024-11-21 08:08
【摘要】數(shù)列求和及綜合應用主干知識整合2.數(shù)列求和的方法技巧(1)轉化法有些數(shù)列,既不是等差數(shù)列,也不是等比數(shù)列,若將數(shù)列通項拆開或變形,可轉化為幾個等差、等比數(shù)列或常見的數(shù)列,即先分別求和,然后再合并.(2)錯位相減法這是在推導等比數(shù)列的前n項和公式時所用的方法,這種方法主要用于求數(shù)列{an·bn
2025-01-17 14:00
【摘要】菜單課后作業(yè)典例探究·提知能自主落實·固基礎高考體驗·明考情新課標·文科數(shù)學(安徽專用)第五節(jié)數(shù)列的綜合應用菜單
2025-01-15 16:33
【摘要】2020屆高考數(shù)學二輪復習系列課件16《數(shù)列-遞歸數(shù)列》考試內容:已知數(shù)列的遞歸關系求數(shù)列的通項公式考試要求:遞歸數(shù)列與極限、數(shù)學歸納法的綜合運用,涉及的思想方法主要是轉化與歸納,考題一般為壓軸題。專題知識整合已知數(shù)列的遞推關系求數(shù)列的通項公式。將已知遞推關系式,用代數(shù)的一些變形技巧
2024-11-23 08:47