【摘要】§均值不等式(一)自主學(xué)習(xí)知識(shí)梳理1.如果a,b∈R,那么a2+b2______2ab(當(dāng)且僅當(dāng)________時(shí)取“=”號(hào)).2.若a,b都為________數(shù),那么a+b2________ab(當(dāng)且僅當(dāng)a________b時(shí),等號(hào)成立),稱上述不等式為________不等式,
2024-12-01 00:36
【摘要】新課標(biāo)人教版課件系列《高中數(shù)學(xué)》必修5《基本不等式-均值不等式》教學(xué)目標(biāo)?推導(dǎo)并掌握兩個(gè)正數(shù)的算術(shù)平均數(shù)不小于它們的幾何平均數(shù)這個(gè)重要定理;利用均值定理求極值。了解均值不等式在證明不等式中的簡單應(yīng)用。?教學(xué)重點(diǎn):?推導(dǎo)并掌握兩個(gè)正數(shù)的算術(shù)平均數(shù)不小于它們的幾何平均數(shù)這個(gè)重要定理;利用均值定
2024-08-20 04:41
【摘要】溫故知新1、比較兩實(shí)數(shù)大小的常用方法△=b2-4ac△0△=0△0)的圖象ax2+bx+c=0(a0)的根ax2+bx+0(a0)的解集ax2+bx+c0(a&
2024-11-29 19:51
【摘要】12不等式的定義:用不等號(hào)連接兩個(gè)解析式所得的式子,叫做不等式.說明:(1)不等號(hào)的種類:>、<、≥(≮)、≤(≯)、≠.(2)解析式是指:代數(shù)式和超越式(包括指數(shù)式、對數(shù)式和三角式等)(3)不等式研究的范圍是實(shí)數(shù)集R.3對于任意兩個(gè)實(shí)數(shù)a、b,在a>b,a=b,a
2024-11-29 19:45
【摘要】第三章不等式§不等關(guān)系與不等式自主學(xué)習(xí)知識(shí)梳理1.比較實(shí)數(shù)a,b的大小(1)文字?jǐn)⑹鋈绻鸻-b是正數(shù),那么a________b;如果a-b為______,那么a=b;如果a-b是負(fù)數(shù),那么a______b,反之也成立.(2)符號(hào)表示a-b0?
2024-12-01 06:19
【摘要】芭蕾舞演員在表演時(shí),腳尖立起給人以美的享受.原來,腳尖立起調(diào)整了身段的比例.如果設(shè)人的腳尖立起提高了m,則下半身長x與全身長y的比由xy變成了x+my+m,這個(gè)比值非常接近黃金分割值0.618.其中的數(shù)學(xué)關(guān)系是≈xyx+my+m≈,怎樣判定“”的關(guān)系成立?
2024-12-01 11:55
【摘要】均值不等式如果a,b∈R,那么a2+b2≥2ab(當(dāng)且僅當(dāng)a=b時(shí)取“=”)證明:222)(2baabba??????????????0)(0)(22babababa時(shí),當(dāng)時(shí),當(dāng)abba222??1.指出定理適用范圍:Rba?,2.強(qiáng)調(diào)取“=”的
2025-03-19 05:16
【摘要】不等關(guān)系與不等式第三章不等式不等關(guān)系與不等式知識(shí)目標(biāo)1.通過具體實(shí)例,感受生活中存在的不等關(guān)系2.理解不等關(guān)系及其在數(shù)軸上的幾何表示3.會(huì)用兩個(gè)實(shí)數(shù)之間的差運(yùn)算確定兩實(shí)數(shù)間的大小關(guān)系,能比較兩個(gè)數(shù)式的大小4.能從實(shí)際的不等關(guān)系中抽象出具體的不等式(組)不等式:含有不等號(hào)的式子.≠><
2024-11-29 16:27
【摘要】新課標(biāo)人教版課件系列《高中數(shù)學(xué)》必修5《基本不等式-均值不等式》審校:王偉教學(xué)目標(biāo)?推導(dǎo)并掌握兩個(gè)正數(shù)的算術(shù)平均數(shù)不小于它們的幾何平均數(shù)這個(gè)重要定理;利用均值定理求極值。了解均值不等式在證明不等式中的簡單應(yīng)用。?教學(xué)重點(diǎn):?推導(dǎo)并掌握兩個(gè)正數(shù)的算術(shù)平均數(shù)不小于它們的幾何平均數(shù)這個(gè)重要定
2024-11-21 03:52
【摘要】如果a,b∈R,那么a2+b2≥2ab(當(dāng)且僅當(dāng)a=b時(shí)取“=”)證明:222)(2baabba??????????????0)(0)(22babababa時(shí),當(dāng)時(shí),當(dāng)abba222??1.定理適用范圍:Rba?,2.取“=”的條件:ba?定理:
2024-11-30 08:48
【摘要】第一篇:不等式證明,均值不等式 1、設(shè)a,b?R,求證:ab3(ab)+aba+b23abba2、已知a,b,c是不全相等的正數(shù),求證:a(b2+c2)+b(c2+a2)+c(a2+b2)>6abc...
2024-11-03 17:10
2024-11-30 12:09
【摘要】均值不等式的綜合應(yīng)用22,0,,222abababBabababCDabABCD????????若A=,,,,試比較、、、的大小。CABD???一.均值定理在比較大小中的應(yīng)用:11,lglg,(lglg),2lg(
【摘要】不等式不等式不等式不等式平均值不等式平均值不等式
2025-05-08 00:24
【摘要】第3課時(shí)均值不等式1.均值不等式基礎(chǔ)知識(shí)梳理2.常用的幾個(gè)重要不等式(1)a2+b2≥(a,b∈R);(2)ab(a+b2)2(a,b∈R);(3)a2+b22(a+b2
2025-08-02 03:54