【摘要】用待定系數(shù)法求二次函數(shù)的解析式y(tǒng)xo課前復(fù)習(xí)例題選講課堂小結(jié)課堂練習(xí)課件制作:宋榮禮課前復(fù)習(xí)二次函數(shù)解析式有哪幾種表達(dá)式??一般式:y=ax2+bx+c?頂點(diǎn)式:y=a(x-h)2+k?兩根式:y=a(x-x1)(x
2024-11-19 01:41
【摘要】?要點(diǎn)·疑點(diǎn)·考點(diǎn)?課前熱身?能力·思維·方法?延伸·拓展?誤解分析第2課時(shí)函數(shù)的解析式要點(diǎn)·疑點(diǎn)·考點(diǎn),要求兩個變量之間的函數(shù)關(guān)系時(shí),一是要求出它們之間的對應(yīng)法則,二是要求出函數(shù)的定義域
2024-11-24 16:45
【摘要】二次函數(shù)解析式的求法(二)二次函數(shù)解析式常見的三種表示形式:(1)一般式(2)頂點(diǎn)式(3)交點(diǎn)式回味知識點(diǎn):1、已知:拋物線y=ax2+bx+c過直線與x軸、y軸的交點(diǎn),且過(1,1),求拋物線的解析式;講例:分析:∵直線
2024-11-21 13:01
【摘要】?第五講函數(shù)的解析式與定義域回歸課本1.函數(shù)解析式的定義函數(shù)的解析式就是用數(shù)學(xué)運(yùn)算符號和等號把數(shù)和表示數(shù)的字母連結(jié)而成的式子叫解析式.解析式亦稱“解析表達(dá)式”或“表達(dá)式”,簡稱“式”.函數(shù)的解析式是組成函數(shù)的三大部分之一,是函數(shù)重要組成部分.函數(shù)的解析式可以是一個式子,也可以是多個式子,這時(shí)每一式子對
2025-05-24 07:57
【摘要】函數(shù)的解析式一、函數(shù)的解析式(一)、函數(shù)的表示:1、列表法:通過列出自變量與對應(yīng)的函數(shù)值的表來表達(dá)函數(shù)關(guān)系的方法叫列表法2、圖像法:如果圖形是函數(shù)的圖像,則圖像上的任意點(diǎn)的坐標(biāo)滿足函數(shù)的關(guān)系式,.3、解析法:如果在函數(shù)中,是用代數(shù)式來表達(dá)的,這種方法叫做解析法(二)、函數(shù)的解析式求法題型1、代入法1,,求2,已知,求3,已知,求
2025-06-25 04:03
【摘要】?試確定下列函數(shù)的定義域。一、牛刀小試——定義域1(1).()2fxx??(2).()32fxx??1(5).()12fxxx????(-∞,2)∪(2,+∞)23,???????????1,2(2,)???
2025-05-25 16:59
【摘要】在給定條件下求函數(shù)的解析式f(x),是高中數(shù)學(xué)中經(jīng)常涉及的內(nèi)容,形式多樣,沒有一定的程序可循,綜合性強(qiáng),解起來有相當(dāng)?shù)碾y度,但是只要認(rèn)真仔細(xì)去探索,還是有一些常用之法.下面談?wù)勄蠛瘮?shù)解析式f(x)的方法.一、配湊法例1已知f()=+,
【摘要】第五講函數(shù)的解析式江蘇省洪澤中學(xué):榮為美1)已知f(x-1/x)=x2+1/x2,則f(x+1)等于A.(x+1)2+1/(x+1)2B.(x-1/x)2+1/(x-1/x)2C.(x+1)2+2D.(x+1)2+1一、求函數(shù)解析式3)已知f(x+1)=x2-2x,則f()=?
2024-11-21 08:49
【摘要】二次函數(shù)的解析式1、了解二次函數(shù)的幾種表達(dá)式:2、能根據(jù)一點(diǎn)、兩點(diǎn)、三點(diǎn)的坐標(biāo)求出二次函數(shù)的表達(dá)式;3、根據(jù)二次函數(shù)的表達(dá)式解決有關(guān)問題.4、提高學(xué)生的閱讀理解能力,收集處理信息能力,運(yùn)用知識能力,解決實(shí)際問題能力,探索、發(fā)現(xiàn)問題能力.1、求下列滿足條件的二次函數(shù)的解析式:
2024-12-01 12:03
【摘要】例(-1,2)、(2,11)、(1,6)在某二次函數(shù)的拋物線上,求該拋物線的解析式方法一:已知拋物線上的任意三點(diǎn),可設(shè)為一般式,再用待定系數(shù)法求解。例(2,4),且可由平移得到,求該拋物線的解析式1)3(212++=xy
2024-10-28 14:46
【摘要】幾何問題中函數(shù)解析式的求法泗安中學(xué)復(fù)習(xí)要點(diǎn)?一般來說,解決這類問題大致分三步:1、分析題意:理清題目中的兩個幾何變量x,y的變化情況及相關(guān)的量。2、按照有關(guān)的幾何性質(zhì)及圖形關(guān)系,找出一個基本關(guān)系式,并將含x,y的量代入這個關(guān)系式,并將它整理成函數(shù)關(guān)系式。3、確定自變量x的取值范圍,畫出相應(yīng)的圖像。典型例題
2024-08-09 15:18
【摘要】第二章函數(shù)1.函數(shù)(1)了解構(gòu)成函數(shù)的要素,會求一些簡單函數(shù)的定義域和值域;了解映射的概念.(2)在實(shí)際情境中,會根據(jù)不同的需要選擇適當(dāng)?shù)姆椒?如圖象法、列表法、解析法)表示函數(shù).(3)了解簡單的分段函數(shù),并能簡單應(yīng)用.(4)理解函數(shù)的單調(diào)性、最大(小)值以及幾何意義;結(jié)合具體函數(shù)
2025-05-08 04:16
【摘要】知識點(diǎn)五:函數(shù)解析式的求法(1)配湊法:由已知條件f(g(x))=F(x),可將F(x)改寫成關(guān)于g(x)的表達(dá)式,然后以x替代g(x),便得f(x)的解析式(如例(1));(2)待定系數(shù)法:若已知函數(shù)的類型(如一次函數(shù)、二次函數(shù)),可用待定系數(shù)法(如例(3));(3)換元法:已知復(fù)合函數(shù)f(g(x))的解析式,可用換元法,此時(shí)要注意新元的取值范圍(如例(2));(4)方程思
2025-06-25 03:50
【摘要】第一講函數(shù)的解析式的求法淮南一中高一年級許晨求函數(shù)的解析式是函數(shù)的常見問題,也是高考的常規(guī)題型之一,方法眾多,下面對一些常用的方法一一辨析.一.換元法題1.已知f(3x+1)=4x+3,求f(x)的解析式.練習(xí)1.若,求.二.配變量法題2.已知,求的解析式.練習(xí)2.若,求.三.待定系數(shù)法題3.設(shè)是一元
2025-04-25 23:40
【摘要】解析式的求法函數(shù))sin(????xAy解析式的求法函數(shù))sin(????xAy1函數(shù)y=Asin(ωx+φ)(ω0),Rx??,2??的部分圖象如圖所示,則函數(shù)表達(dá)為)48sin(4.)48sin(4.)48sin(4.)48sin
2024-11-22 05:08